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Preface

The problem of investigation of time delay systems has been explored over many years. 
Time delay is very oft en encountered in various technical systems, such as electric, 
pneumatic and hydraulic networks, chemical processes, long transmission lines, etc. 
The existence of pure time lag, regardless if it is present in the control or/and the state, 
may cause undesirable system transient response, or even instability. Consequently, 
the problem of stability analysis for this class of systems has been one of the main in-
terests for many researchers. In general, the introduction of time delay factors makes 
the analysis much more complicated. 

So, the title of the book Time-Delay Systems encompasses broad fi eld of theory and 
application of many diff erent control applications applied to diff erent classes of afore-
mentioned systems.

It must be admitt ed that a strong stress, in this monograph, is put on the historical sig-
nifi cance of systems stability and in that sense, problems of asymptotic, exponential, 
non-Lyapunov and technical stability deserved a great att ention. Moreover, an evident 
contribution was given with introductory chapter dealing with basic problem of Quasi-
polyinomial stability.

Time delay systems can achieve diff erent att ributes. Namely, when we speak about sin-
gular or descriptor systems, one must have in mind that with some systems we must 
consider their character of dynamic and static state at the same time. Singular systems 
(also referred to as degenerate, descriptor, generalized, diff erential-algebraic systems 
or semi–state) are systems with dynamics, governed by the mixture of algebraic and 
- diff erential equations. The complex nature of singular  systems causes many diffi  cul-
ties in the analytical and  numerical treatment of such  systems, particularly when 
there is a need  for  their  control. 

It  must be emphasized that there are lot of systems that show the phenomena of time 
delay and singularity simultaneously, and we call such systems singular diff erential sys-
tems with time delay. These systems have many special characteristics. If we want to 
describe them more exactly, to design them more accurately and to control them more 
eff ectively, we must tremendously endeavor to investigate them, but that is obvious-
ly very diffi  cult work. When we consider time delay systems in general, within the 
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existing stability criteria, two main ways of approach are adopted. Namely, one direc-
tion is to contrive the stability condition which does not include the information on the 
delay, and the other is the method which takes it into account. The former case is oft en 
called the delay-independent criteria and generally provides simple algebraic condi-
tions. In that sense, the question of their stability deserves great att ention. 

In the second and third chapter authors discuss such systems and some signifi cant con-
sequences, discussing their Lyapunov and  non-Lyapunov stability characteristics. 

Exponential stability of uncertain switched systems with time-varying delay and actu-
al problems of stabilization and determining of stability characteristics of steady-state 
regimes are among the central issues in the control theory. Diffi  culties can be especially 
met when dealing with the systems containing nonlinearities which are non-analytic 
function of phase with problems that have been treated in two following chapters.

Some of synthesis problems have been discussed in the following chapters covering 
problems such as: static output-feedback stabilization of interval time delay systems, 
controllers design, decentralized adaptive stabilization for large-scale systems with 
unknown time-delay and resilient adaptive control of uncertain time-delay systems.

Finally, actual problems with some practical implementation and dealing with slid-
ing mode control, synchronization of multiple time delay systems and T-S fuzzy H∞ 
tracking control of input delayed robotic manipulators, were presented in last three 
chapters, including inevitable application of linear matrix inequalities.

Dr Dragutin Lj. Debeljković
University of Belgrade

Faculty of Mechanical Engineering
Department of Conrol Engineering

Serbia
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Introduction to Stability of Quasipolynomials

Lúcia Cossi
Departamento de Matemática, Universidade Federal da Paraíba

João Pessoa, PB, Brazil

1. Introduction

In this Chapter we shall consider a generalization of Hermite-Biehler Theorem1 given by
Pontryagin in the paper Pontryagin (1955). It should be understood that Pontryagin’s
generalization is a very relevant formal tool for the mathematical analysis of stability of
quasipolynomials. Thus, from this point of view, the determination of the zeros of a
quasipolynomial by means of Pontryagin’s Theorem can be considered to be a mathematical
method for analysis of stabilization of a class of linear time invariant systems with time delay.
Section 2 contains an overview of the representation of entire functions as an infinite product
by way of Weierstrass’ Theorem—as well as Hadamard’s Theorem. Section 3 is devoted to
an exposition to the Theory of Quasipolynomials via Pontryagin’s Theorem in addition to a
generalization of Hermite-Biehler Theorem. Section 4 deals with applications of Pontryagin’s
Theorem to analysis of stabilization for a class of linear time invariant systems with time
delays.

2. Representation of the entire functions by means of infinite products

In this Section we will present the mathematical background with respect to the Theory
of Complex Analysis and to provide the necessary tools for studying the Hermite-Biehler
Theorem and Pontryagin’s Theorems. At the first let us introduce the basic definitions and
general results used in the representation of the entire functions as infinite products2.

2.1 Preliminaries
Definition 1. (Zeros of analytic functions) Let f : Ω −→ C be an analytic function in a region
Ω—i.e., a nonempty open connected subset of the complex plane. A value α ∈ Ω is called a zero of f
with multiplicity (or order) m ≥ 1 if, and only if, there is an analytic function g : Ω −→ C such that
f (z) = (z− α)m g(z), where g(α) �= 0. A zero of order one (m = 1) is called a simple zero.

Definition 2. (Isolated singularity) Let f : Ω −→ C be an analytic function in a region Ω. A value
β ∈ Ω is called a isolated singularity of f if, and only if, there exists R > 0 such that f is analytic in
{z ∈ C: 0 < |z− β| < R} but not in B(β, R) = {z ∈ C: |z− β| < R}.

1 See Levin (1964) for an analytical treatment about the Hermite-Biehler Theorem and a generalization of
this theorem to arbitrary entire functions in an alternative way of the Pontryagin’s method.

2 See Ahlfors (1953) and Titchmarsh (1939) for a detailed exposition.
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Definition 3. (Pole) Let Ω be a region. A value β ∈ Ω is called a pole of analytic function
f : Ω −→ C if, and only if, β is a isolated singularity of f and lim

z−→β
| f (z)| = ∞.

Definition 4. (Pole of order m) Let β ∈ Ω be a pole of analytic function f : Ω −→ C . We say that

β is a pole of order m ≥ 1 of f if, and only if, f (z) =
A1

z− β
+

A2

(z− β)2 + . . . +
Am

(z− β)m + g1(z),

where g1 is analytic in B(β, R) and A1, A2, . . . , Am ∈ Cwith Am �= 0.

Definition 5. (Uniform convergence of infinite products) The infinite product

+∞

∏
n=1

(1 + fn(z)) = (1 + f1(z))(1 + f2(z)) . . . (1 + fn(z)) . . . (1)

where { fn}n∈IN is a sequence of functions of one variable, real or complex, is said to be uniformly
convergent if the sequence of partial product ρn defined by

ρn(z) =
n

∏
m=1

(1 + fm(z)) = (1 + f1(z))(1 + f2(z)) . . . (1 + fn(z)) (2)

converges uniformly in a certain region of values of z to a limit which is never zero.

Theorem 1. The infinite product (1) is uniformly convergent in any region where the series
+∞

∑
n=1

| fn(z)|
is uniformly convergent.

Definition 6. (Entire function) A function which is analytic in whole complex plane is said to be
entire function.

2.2 Factorization of the entire functions
In this subsection, it will be discussed an important problem in theory of entire functions,
namely, the problem of the decomposition of an entire function—under the form of an infinite
product of its zeros—in pursuit of the mathematical basis in order to explain the distribution
of the zeros of quasipolynomials.

2.2.1 The problem of factorization of an entire function
Let P(z) = anzn + . . . + a1z + a0 be a polynomial of degree n, (an �= 0). It follows of the
Fundamental Theorem of Algebra that P(z) can be decomposed as a finite product of the
following form: P(z) = an(z− α1) . . . (z− αn), where the α1, α2, . . . , αn are—not necessarily
distinct—zeros of P(z). If exactly kj of the αj coincide, then the αj is called a zero of P(z) of
order kj [see Definition (1)]. Furthermore, the factorization is uniquely determined except for
the order of the factors. Remark that we can also find an equivalent form of a polynomial

function with a finite product of its zeros, more precisely, P(z) = Czm
N

∏
j=1

(1− z
αj
), where

C = an

N

∏
j=1

(−αj), m is the multiplicity of the zero at the origin, αj �= 0(j = 1, . . . , N) and

m + N = n.
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We can generalize the problem of factorization of the polynomial function for any entire
function expressed likewise as an infinite product of its zeros.
Let’s supposed that

f (z) = zmeg(z)
∞

∏
n=1

(1− z
αn

) (3)

where g(z) is an entire function. Hence, the problem can be established in following way: the
representation (3) should be valid if the infinite product converges uniformly on every compact set [see
Definition (5)].

2.2.2 Weierstrass factorization theorem
The problem characterized above was completely resolved by Weierstrass in 1876. As matter
of fact, we have the following definitions and theorems.

Definition 7. (Elementary factors) We can to take

E0(z) = 1− z, and (4)

Ep(z) = (1− z) exp(z +
z2

2
+ . . . +

zp

p
), for all p = 1, 2, 3, ... (5)

These functions are called elementary factors.

Lemma 1. If |z| ≤ 1 , then |1− Ep(z)| ≤ |z|p+1, for p = 1, 2, 3, ....

Theorem 2. Let {αn}n∈IN be a sequence of complex numbers such that αn �= 0 and lim
n−→+∞

|αn| = ∞.

If {pn}n∈IN is a sequence of nonnegative integers such that

∞

∑
n=1

(
r

rn
)1+pn < ∞, where |αn| = rn, (6)

for every positive r, then the infinite product

f (z) =
∞

∏
n=1

Epn(
z

αn
) (7)

define an entire function f which has a zero at each point αn, n ∈ IN, and has no other zeros in the
complex plane.

Remark 1. The condition (6) is always satisfied if pn = n− 1. Indeed, for every r, it follows that

rn > 2r for all n > n0, since lim
n−→+∞

rn = ∞. Therefore,
r

rn
<

1
2

for all n > n0, then (6) is valid with

respect to 1 + pn = n.

Theorem 3. (Weierstrass Factorization Theorem) Let f be an entire function. Suppose that f (0) �= 0,
and let α1, α2, . . . be the zeros of f , listed according to their multiplicities. Then there exist an entire
function g and a sequence {pn}n∈IN of nonnegative integers, such that

f (z) = eg(z)
∞

∏
n=1

Epn(
z

αn
) = eg(z)

∞

∏
n=1

(
1− z

αn

)
e

[
z

αn
+ 1

2 (
z

αn
)2+...+ 1

n−1 (
z

αn
)n−1

]
(8)
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Notice that, by convention, with respect to n = 1 the first factor of the infinite product should be

1− 1
α1

.

Remark 2. If f has a zero of multiplicity m at z = 0, the Theorem (3) can be apply to the function
f (z)
zm .

Remark 3. The decomposition (8) is not unique.

Remark 4. In the Theorem (3), if the sequence {pn}n∈IN of nonnegative integers is constant, i.e.,
pn = ρ for all n ∈ IN, then the following infinite product:

eg(z)
∞

∏
n=1

Eρ(
z

αn
) (9)

converges and represents an entire function provided that the series
1

ρ + 1

∞

∑
n=1

(
R
|αn| )

ρ+1 converges for

all R > 0. Suppose that ρ is the smallest integer for which the series
∞

∑
n=1

1
|αn|ρ+1 converges. In this

case, the expression (9) is denominated the canonical product associated with the sequence {αn}n∈IN
and ρ is the genus of the canonical product 3.

With reference to the Remark (4) we can state:

Hadamard Factorization Theorem. If f is an entire function of finite order ϑ, then it admits

a factorization of the following manner: f (z) = zmeg(z)
∞

∏
n=1

Ep(
z

αn
), where g(z) is a polynomial

function of degree q, and max{p, q} ≤ ϑ.

The first example of infinite product representation was given by Euler in 1748, viz.,

sin(πz) = πz
∞

∏
n=1

(1− z2

n2 ), where m = 1, p = 1, q = 0 [g(z) ≡ 0], and ϑ = 1.

3. Zeros of quasipolynomials due to Pontryagin’s theorem

We know that, under the analytic standpoint and a geometric criterion, results concerning
the existence and localization of zeros of entire functions like exponential polynomials have
received a considerable attention in the area of research in the automation field. In this section
the Pontryagin theory is outlined.

Consider the linear difference-differential equation of differential order n and difference order
m defined by

n

∑
μ=0

m

∑
ν=0

aμνx(μ)(t + ν) = 0 (10)

3 See Boas (1954) for analysis of the problem about the connection between the growth of an entire
function and the distribution of its zeros.
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where m and n are positive integers and aμν(μ = 0, . . . , n, ν = 0, . . . , m) are real numbers. The
characteristic function associated to (10) is given by:

δ(z) = P(z, ez), (11)

where P(z, s) =
n

∑
μ=0

m

∑
ν=0

aμνzμsν is a polynomial in two variables.

Pontryagin’s Theorem, in fact, establishes necessary and sufficient conditions such that the
real part of all zeros in (11) may be negative. These conditions transform the problem a real
variable one.

Definition 8. (Quasipolynomials)4 We call the quasipolynomials or exponential polynomials the
entire functions of the form:

F(z) =
m

∑
ξ=0

fξ(z)e
λξ z = f0(z)e

λ0z + f1(z)e
λ1z + . . . + fm(z)eλmz (12)

where fξ(ξ = 0, . . . , m) are polynomial functions with real (or complex) coefficients, and
λξ (ξ = 0, . . . , m) are real (or complex) numbers. In particular, if the λξ (ξ = 0, . . . , m) are
commensurable real numbers and 0 = λ0 < λ1, . . . < λm, then the quasipolynomial (12) can be
written in the form (11) studied by Pontryagin.

Notice that, some trigonometric functions, e.g., sin and cos are quasipolynomials since

sin(mz) =
1
2j

ejmz − 1
2j

e−jmz and cos(nz) =
1
2

ejnz +
1
2

e−jnz, where j =
√−1, and m, n ∈ IN.

Remark 5. If the quasipolynomial F(z) in (12) does not degenerate into a polynomial, then the
quasipolynomial F(z) has an infinite set of zeros whose unique limit point is infinite. Note that all
roots of F(z) are separated from one another by more than some distance d > 0, therefore it is possible
to determine non-intersecting circles of radius r < d encircling all the roots taken as centers.

Definition 9. (Hurwitz Stable) The quasipolynomial F(z) in (12) is said to be a Hurwitz stable if,
and only if, all its roots lie in the open left-half of the complex plane.

Definition 10. (Interlacing Property) Let f (ω) and g(ω) be two real functions of a real variable. The
zeros of these two functions interlace (or alternate) if, and only if, we have the following conditions:

1. each of the functions has only simple zeros [see Definition1];

2. between every two zeros of one of these functions there exists one and only one zero of the other;

3. the functions f (ω) and g(ω) have no common zeros.

We cannot refrain from remark that Cebotarev, in 1942, gave the generalization of the Sturm
algorithm to quasipolynomials, therefore we have a general principle for solving that problem
for arbitrary quasipolynomials. Notwithstanding, it is of interest to note that Chebotarev’s
result presuppose a generalization of the Hermite-Biehler Theorem to quasipolynomials.

4 See Pontryagin (1969) for a discussion detailed.
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Theorem 4. (Pontryagin’s Theorem) Pontryagin (1955) Let δ(z) = P(z, ez) be a quasipolynomial,
where P(z, s) is a polynomial function in two variables with real coefficients as defined in (11). Suppose
that anm �= 0. Let δ(jω) be the restriction of the quasipolynomial δ(z) to imaginary axis. We can
express δ(jω) = f (ω) + jg(ω), where the real functions (of a real variable) f (ω) and g(ω) are the
real and imaginary parts of δ(jω), respectively. Let us denote by ωr and ωi, respectively, the zeros
of the function f (ω) and g(ω). If all the zeros of the quasipolynomial δ(z) lie to the left side of the
imaginary axis, then the zeros of the functions f (ω) and g(ω) are real, alternating, and

g′(ω) f (ω)− g(ω) f ′(ω) > 0. (13)

for each ω ∈ IR. Reciprocally, if one of the following conditions is satisfied:

1. All the zeros of the functions f (ω) and g(ω) are real and alternate and the inequality (13) is
satisfied for at least one value ω;

2. All the zeros of the function f (ω) are real , and for each zero of f (ω) the inequality (13) is satisfied,
that is, g(ωr) f ′(ωr) < 0;

3. All the zeros of the function g(ω) are real, and for each zero of g(ω) the inequality (13) is satisfied,
that is, g′(ωi) f (ωi) > 0;

then all the zeros of the quasipolynomial δ(z) lie to the left side of the imaginary axis.

Remark 6. Let us note that the above function δ(jω) in Theorem (4) has, also, the following form:

δ(jω) =
n

∑
μ=0

m

∑
ν=0

aμνωμ

[
ν

∑
ρ=0

(j)μ+ν−ρ ν!
ρ!(ν− ρ)!

(cos ω)ρ(sin ω)ν−ρ

]
. (14)

Consequently, the functions f (ω) and g(ω) can be express as Q(ω) = q(ω, cos(ω), sin(ω)), where
q(ω, u, v) is a real polynomial function in three variables with real coefficients.

With respect to the Remark (6), it should be pointed out, the polynomial q(ω, u, v) may be
represented in the form:

q(ω, u, v) =
n

∑
μ=0

m

∑
ν=0

ωμφ
(ν)
μ (u, v), (15)

where φ
(ν)
μ (u, v) is a real homogeneous polynomial of degree ν in two real variables u and v.

The formula ωnφ
(m)
n (u, v) is denominated the principal term of the polynomial in (15). From

(15), we can define φ∗n(u, v) as follows

φ∗n(u, v) =
m

∑
ν=0

φ
(ν)
n (u, v). (16)

And by substituting u = cos(ω) and v = sin(ω) in (16) we can express

Φ∗n(ω) = φ∗n(cos(ω), sin(ω)). (17)

Now, let us consider the above formalization in complex field, that is,
Φ∗n(z) = φ∗n(cos(z), sin(z)), where z ∈ C .
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Theorem 5. Pontryagin (1955) Let q(z, u, v) be a polynomial function, as given in (15), with three

complex variables and real coefficients, in which the principal term is znφ
(m)
n (u, v). If ε is such that

Φ∗n(ε + j�) does not take the value zero for every real �, then the function Q(ω + j�) has exactly
4kn + m zeros—for some sufficiently large value of k— for (ω, �) ∈ [−2kπ + ε, 2kπ + ε]× IR.
Hence, in order that the restriction of the function Q to IR, denoted by Q(ω), have only
real roots, it is necessary and sufficient that Q(ω) have exactly 4kn + m zeros in the interval
−2kπ + ε ≤ ω ≤ 2kπ + ε for sufficiently large k.

4. Applications of Pontryagin’s theorem to analysis of stabilization for a class of
linear time invariant systems with time delay

In this Section we will explain some relevant applications concerning the Hermite-Biehler
Theorem and Pontryagin’s Theorems in the framework of Control Theory. Apropos to the
several methodological approaches about the subject of the Section 3, we have in technical
literature some significant publications, viz., Bellman & Cooke (1963), Bhattacharyya et
al. (2009) and Oliveira et al. (2009). These methods constitute a set of analytic tools for
mathematical modeling and general criteria for studying of stability of the dynamic systems
with time delays, that is, for setting a characterization of all stabilizing P, PI or PID controllers
for a given plant. It should be pointed out that the definition of the formal concept of
signature—introduced in the reference Oliveira et al. (2003)—allows to extend results of the
polynomial case to quasipolynomial case via property of interlacing in high frequencies of the
class of time delay systems considered 5.
The dynamic behavior of many industrial plants may be mathematically modeled by a linear
time invariant system with time delay. The problem of stability of linear time invariant
systems with time delay make necessary a method for localization of the roots of analytic
functions. These systems are described by the linear differential equations with constant
coefficients and constant delays of the argument of the following manner

n

∑
μ=0

m

∑
ν=0

aμνu(μ)(t− τν) = h(t) (18)

where the coefficients are denoted by aμν ∈ IR(μ = 0, . . . , n, ν = 0, . . . , m) and the constant
delays are symbolized by τν ∈ IR(ν = 0, . . . , m) with 0 = τ0 < τ1, . . . < τm.

5 The Hermite-Biehler Theorem provides necessary and sufficient conditions for Hurwitz stability of
real polynomials in terms of an interlacing property. Notice that, if a given real polynomial is not
Hurwitz, the Hermite-Biehler Theorem does not provide information on its roots distribution. A
generalization of Hermite-Biehler Theorem with respect to real polynomials was first derived in a report
by Özgüler & Koçan (1994) in which was given a formula for a signature of polynomial—not necessarily
Hurwitz—applicable to real polynomials without zeros on the imaginary axis except possibly a single
root at the origin. This formula was employed to solve the constant gain stabilization problem. It may
be mentioned that, in Ho et al. (1999), a different formula applicable to arbitrary real polynomials—but
without restrictions on root localizations—was derived and used in the problem of stabilizing PID
controllers. In addition, as a result of Ho et al. (2000), a generalization of the Hermite-Biehler Theorem
for real polynomials—not necessarly Hurwitz—to the polynomials with complex coefficients was
derived and, as a consequence of that extension, we have a technical application to a problem of
stabilization in area of Control Theory.

7Introduction to Stability of Quasipolynomials



We can denominate the equation (18) as an equation with delayed argument, if
the coefficient an0 �= 0 and the remaining coefficients anν = 0(ν = 1, . . . , m), that is,

an0u(n)(t) +
n−1

∑
μ=0

m

∑
ν=0

aμνu(μ)(t− τν) = h(t); analogously, the equation (18) is denominated

an equation with advanced argument, if the coefficient an0 = 0 and, if only for

one ν > 0, anν �= 0, that is, anν0 u(n)(t− τν0) +
n−1

∑
μ=0

m

∑
ν=0

aμνu(μ)(t− τν) = h(t), for only

one ν0 ∈ {1, . . . , m} and, finally, the equation (18) is denominated an equation of
neutral type, if the coefficient an0 �= 0 and, if only for one ν > 0, anν �= 0, that is,

an0u(n)(t) + anν0 u(n)(t− τν0) +
n−1

∑
μ=0

m

∑
ν=0

aμνu(μ)(t− τν) = h(t), for only one ν0 ∈ {1, . . . , m}.

Let us consider h(t) = 0 in equation (18), we obtain the homogeneous linear equation with
constant coefficients and constant delays of the argument like

n

∑
μ=0

m

∑
ν=0

aμνu(μ)(t− τν) = 0. (19)

Assuming that u(t) = ezt, where z denotes a complex constant, is a particular solution of the
equation (19) and, by substituting in (19) we obtain the so-called characteristic equation

n

∑
μ=0

m

∑
ν=0

aμνzμe−τνz = 0. (20)

From the equation (20) we can define the characteristic quasipolynomial in the following form

δ∗(z) =
n

∑
μ=0

m

∑
ν=0

aμνzμe−τνz. (21)

Note that the equation (20) has an infinite set of roots, therefore to every root zk corresponds

a solution u(t) = ezkt of the equation (19). And, if the sums of infinite series
∞

∑
k=0

Ckezkt of

solutions converge and admit n− fold term-by-term differentiation, then those sums are also
solutions of the equation (19).
Multiplying the equation (21) by eτmz, it follows that

δ(z) = eτmzδ∗(z) =
n

∑
μ=0

m

∑
ν=0

aμνzμe(τm−τν)z =
m

∑
ν=0

pν(z)e(τm−τν)z, (22)

where pν(z) =
n

∑
μ=0

aμνzμ(ν = 0, . . . , m). For m �= 0, the function (22) belongs to a general class

of quasipolynomials [see Definition (8)]. It is evident that δ(z) = eτmzδ∗(z) and δ∗(z) have the
same zeros 6. Thus, from this point of view, the zeros of the function δ(z) can be obtained
from the Theorems (4) and (5).

6 see El’sgol’ts (1966) for a fully discussion.
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Now, consider a special class of quasipolynomials (with one delay) given by

δ∗(z) = p0(z) + e−Lzp1(z), (23)

where p0(z) = zn +
n−1

∑
μ=0

aμ0zμ with aμ0 ∈ IR(μ = 0, . . . , n− 1), p1(z) =
n

∑
μ=0

aμ1zμ with

aμ1 ∈ IR(μ = 0, . . . , n) and L > 0. Multiplying the (23) by eLz, it follows that

δ(z) = eLzδ∗(z) = eLz p0(z) + p1(z). (24)

We consider the following Assumptions:

Hypothesis 1. ∂(p1) < n [retarded type]

Hypothesis 2. ∂(p1) = n and 0 < |an1| < 1 [neutral type]

where ∂(p1) stands for the degree of polynomial p1. Notice that, Hypothesis (1) implies that
an1 = 0 and aμ1 �= 0 for some μ = 0, . . . , n− 1.
Firstly, in what follows, we will state the Lemma (2) and Hypothesis (3) to establish the
definition of signature of the quasipolynomials.

Lemma 2. Suppose a quasipolynomial of the form (24) given. Let f (ω) and g(ω) be the real and
imaginary parts of δ(jω), respectively. Under Hypothesis (1) or (2), there exists 0 < ω0 < ∞ such
that in [ω0, ∞) the functions f (ω) and g(ω) have only real roots and these roots interlace7.

Hypothesis 3. Let ηg + 1 be the number of zeros of g(ω) and η f be the number of zeros of f (ω) in
(0, ω1). Suppose that ω1 ∈ IR+, ηg, η f ∈ IN are sufficiently large, such that the zeros of f (ω) and
g(ω) in [ω0, ∞) interlace (with ω0 < ω1). Therefore, if η f + ηg is even, then ω0 = ωgηg

, where ωgηg

denotes the ηg-th (non-null) root of g(ω), otherwise ω0 = ω fη f
, where ω fη f

denotes the η f -th root of

f (ω).

Note that, the Lemma (2) establishes only the condition of existence for ω0 such that f (ω) and
g(ω) have only real roots and these roots interlace, by another hand the Hypothesis (3) has a
constructive character, that is, it allows to calculate ω0.

Definition 11. (Signature of Quasipolynomials) Let δ(z) be a given quasipolynomial
described as in (24) without real roots in imaginary axis. Under Hypothesis (3), let
0 = ωg0 < ωg1 < . . . < ωgηg

≤ ω0 and ω f1
< . . . < ω fη f

≤ ω0 be real and distinct zeros of

g(ω) and f (ω), respectively. Therefore, the signature of δ is defined by

σ(δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
sgn[ f (ωg0)] + 2

(
∑

ηg−1
k=1 (−1)ksgn[ f (ωgk)]

)
+ (−1)ηg sgn[ f (ωgηg

)]

}
(−1)ηg−1sgn[g(ω+

gηg−1
)],

if η f + ηg is even;{
sgn[ f (ωg0)] + 2

(
∑

ηg

k=1(−1)ksgn[ f (ωgk)]

)}
(−1)ηg sgn[g(ω+

gηg
)],

if η f + ηg is odd;

7 The proof of Lemma (2) follows from Theorems (4) - (5); indeed, under Hypothesis (2) the roots of δ(z)
go into the left hand complex plane for |z| sufficiently large. A detailed proof can be find in Oliveira et
al. (2003) and Oliveira et al. (2009).
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where sgn is the standard signum function, sgn[g(ω+
λ )] stands for lim

ω−→ω+
λ

sgn[g(ω)] and

ωλ, (λ = 0, . . . , gηg ) is the λ-th zero of g(ω).

Now, by means of the Definition of Signature the following Lemma can be established.

Lemma 3. Consider a Hurwitz stable quasipolynomial δ(z) described as in (24) under Hypothesis (1)
or (2). Let η f and ηg be given by Hypothesis (3). Then the signature for the quasipolynomial δ(z) is
given by σ(δ) = η f + ηg.

Referring to the feedback system with a proportional controller C(z) = kp, the resulted
quasipolynomial is given by:

δ(z, kp) = eLz p0(z) + kp p1(z) (25)

where p0(z) and p1(z) are given in (24). In the next Lemma we consider δ(z, kp)

under Hypothesis (1) or (2). Consequently, we obtain a frequency range signature for
the quasipolynomial given by the product δ(z, kp)p1(−z) which is used to establish the
subsequent Theorem with respect to the stabilization problem.

Lemma 4. For any stabilizing kp, let ηg + 1 and η f be, respectively, the number of real and distinct
zeros of imaginary and real parts of the quasipolynomial δ(jω, kp) given in (25). Suppose ηg and
η f sufficiently large, it follows that δ(jω, kp) is Hurwitz stable if, and only if, the signature for
δ(jω, kp)p1(−jω) in [0, ω0] with ω0 as in Hypothesis (3), is given by ηg + η f − σ(p1), where σ(p1)

stands for the signature of the polynomial p1.

Definition 12. (Set of strings) Let 0 = ωg0 < ωg1 < . . . < ωgk ≤ ω0 be real and distinct zeros of
g(ω). Then the set of strings Ak in the range determined by frequency ω0 is defined as

Ak = {s0, . . . , sk : s0 ∈ {−1, 0, 1}; sl ∈ {−1, 1}; l = 1, . . . , k} (26)

with sl identified as sgn[ f (ωgl)] in the Definition (11).

Theorem 6. Let δ(z, kp) be the quasipolynomial given in (25). Consider
f (ω, kp) = f1(ω) + kp f2(ω) and g(ω) as the real and imaginary parts of the quasipolynomial
δ(jω, kp)p1(−jω), respectively. Suppose there exists a stabilizing kp of the quasipolynomial
δ(z, kp), and by taking ω0 as given in Hypothesis (3) associated to the quasipolynomial δ(z, kp). Let
0 = ωg0 < ωg1 < . . . < ωgι ≤ ω0 be the real and distinct zeros of g(ω) in [0, ω0]. Assume that
the polynomial p1(z) has no zeros at the origin. Then the set of all kp—denoted by I—such that
δ(z, kp) is Hurwitz stable may be obtained using the signature of the quasipolynomial δ(z, kp)p1(−z).

In addition, if Iι = ( max
st∈A+

ι

[− 1
G(jωgt)

], min
st∈A−ι

[− 1
G(jωgt)

]), where
1

G(jω)
=

f1(ω)− jg(ω)

f2(ω)
,

Aι is a set of string as in Definition (12) , A+
ι = {st ∈ Aι : st.sgn[ f2(ωgt )] = 1} and

A−ι = {st ∈ Aι : st.sgn[ f2(ωgt )] = −1}, such that max
st∈A+

ι

[− 1
G(jωgt)

] < min
st∈A−ι

[− 1
G(jωgt)

],

then I =
⋃ Iι, with ι the number of feasible strings.
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4.1 Stabilization using a PID Controller
In the preceding section we take into account statements introduced in Oliveira et al. (2003),
namely, Hypothesis (3), Definition (11), Lemma (2), Lemma (3), Lemma (4), and Theorem (6).
Now, we shall regard a technical application of these results.
In this subsection we consider the problem of stabilizing a first order system with time delay
using a PID controller. We will utilize the standard notations of Control Theory, namely, G(z)
stands for the plant to be controller and C(z) stands for the PID controller to be designed. Let
G(z) be given by

G(z) =
k

1 + Tz
e−Lz (27)

and C(z) is given by

C(z) = kp +
ki
z
+ kdz,

where kp is the proportional gain, ki is the integral gain, and kd is the derivative gain.

The main problem is to analytically determine the set of controller parameters (kp, ki, kd) for
which the closed-loop system is stable. The closed-loop characteristic equation of the system
with PID controller is express by means of the quasipolynomial in the following general form

δ(jω, kp, ki, kd)p1(−jω) = f (ω, ki, kd) + jg(ω, kp) (28)

where
f (ω, ki, kd) = f1(ω) + (ki − kdω2) f2(ω)

g(ω, kp) = g1(ω) + kpg2(ω)

with
f1(ω) = −ω[ω2po

0(−ω2)po
1(−ω2) + pe

0(−ω2)pe
1(−ω2)] sin(Lω) + ω2[ω2po

1(−ω2)pe
0(−ω2)−

po
0(−ω2)pe

1(−ω2)] cos(Lω)

f2(ω) = pe
1(−ω2)pe

1(−ω2) + ω2po
1(−ω2)po

1(−ω2)

g1(ω) = ω[ω2po
0(−ω2)po

1(−ω2) + pe
0(−ω2)pe

1(−ω2)] cos(Lω) + ω2[ω2po
1(−ω2)pe

0(−ω2) −
po

0(−ω2)pe
1(−ω2)] sin(Lω)

g2(ω) = ω f2(ω) = ω[pe
1(−ω2)pe

1(−ω2) + ω2 po
1(−ω2)po

1(−ω2)]

where pe
0 and po

0 stand for the even and odd parts of the decomposition
p0(ω) = pe

0(ω
2) + ωpo

0(ω
2), and analogously for p1(ω) = pe

1(ω
2) + ωpo

1(ω
2). Notice

that for a fixed kp the polynomial g(ω, kp) does not depend on ki and kd, therefore we can
obtain the stabilizing ki and kd values by solving a linear programming problem for each
g(ω, kd), which is establish in the next Lemma.

Lemma 5. Consider a stabilizing set (kp, ki, kd) for the quasipolynomial δ(jω, kp, ki, kd) as given in
(28). Let ηg + 1 and η f be the number of real and distinct zeros, respectively, of the imaginary and real
parts of δ(jω, kp, ki, kd) in [0, ω0], with a sufficiently large frequency ω0 as given in the Hypothesis
(3). Then, δ(jω, kp, ki, kd) is stable if, and only if, for any stabilizing set (kp, ki, kd) the signature of the
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quasipolynomial δ(z, kp, ki, kd)p1(−z) determined by the frequency ω0 is given by ηg + η f − σ(p1),
where σ(p1) stands for the signature of the polynomial p1.

Finally, we make the standing statement to determine the range of stabilizing PID gains.

Theorem 7. Consider the quasipolynomial δ(jω, kp, ki, kd)p1(−jω) as given in (28). Suppose there
exists a stabilizing set (kp, ki, kd) for a given plant G(z) satisfying Hypothesis (1) or (2). Let η f , ηg

and ω0 be associated to the quasipolynomial δ(jω, kp, ki, kd) be choosen as in Hypothesis (3). For a
fixed kp, let 0 = ωg0 < ωg1 < . . . < ωgι ≤ ω0 be real and distinct zeros of g(ω, kp) in the frequency
range given by ω0. Then, the (ki, kd) values—such that the quasipolynomial δ(jω, kp, ki, kd) is
stable—are obtained by solving the following linear programming problem:{

f1(ωgt ) + (ki − kdω2
gt
) f2(ωgt) > 0, for st = 1,

f1(ωgt ) + (ki − kdω2
gt
) f2(ωgt) < 0, for st = −1;

with st ∈ Aι(t = 0, 1, . . . , ι) and, such that the signature for the quasipolynomial
δ(jω, kp, ki, kd)p1(−jω) equals ηg + η f − σ(p1), where σ(p1) stands for the signature of the
polynomial p1.

Now, we shall formulate an algorithm for PID controller by way of the above theorem. The
algorithm8 can be state in following form:

Step 1: Adopt a value for the set (kp, ki, kd) to stabilize the given plant G(z). Select η f and
ηg, and choose ω0 as in the Hypothesis (3).

Step 2: Enter functions f1(ω) and g1(ω) as given in (28).

Step 3: In the frequency range determined by ω0 find the zeros of g(ω, kp) as defined in (28)
for a fixed kp.

Step 4: Using the Definition(11) for the quasipolynomial δ(z, kp, ki, kd)p1(−z), and find the
strings Aι that satisfy σ(δ(z, kp, ki, kd)p1(−z)) = ηg + η f − σ(p1).

Step 5: Apply Theorem (7) to obtain the inequalities of the above linear programming problem.

5. Conclusion

In view of the following fact concerning the bibliographic references (in this Chapter): all
the quasipolynomials have only one delay, it follows that we can express δ(z) = P(z, ez) as
in (24), where P(z, s) = p0(z)s + p1(z) with ∂(p0) = 1, ∂(p1) = 0 and ∂(p0) = 2, ∂(p1) = 1
in Silva et al. (2000), ∂(p0) = 2, ∂(p1) = 0 in Silva et al. (2001), ∂(p0) = 2, ∂(p1) = 2 in Silva
et al. (2002), ∂(p0) = 2, ∂(p1) = 2 in Capyrin (1948), ∂(p0) = 5, ∂(p1) = 5 in Capyrin (1953),
and ∂(p0) = 1, ∂(p1) = 0 [Hayes’ equation] and ∂(p0) = 2, ∂(p1) = 0, 1, 2 [particular cases] in
Bellman & Cooke (1963), respectively. Similarly, in the cases studied in Oliveira et al. (2003)
and Oliveira et al. (2009)—and described in this Chapter—the Hypothesis (3) and Definition
(11) take into account Pontryagin’s Theorem. In addition, if we have particularly the following
form F(z) = f1(z)e

λ1z + f2(z)e
λ2z, with λ1, λ2 ∈ IR (noncommensurable) and 0 < λ1 < λ2, we

can write F(z) = eλ1zδ(z), where δ(z) = f1(z) + f2(z)e
(λ2−λ1)z with ∂( f2) > ∂( f1), therefore

δ(z) can be studied by Pontryagin’s Theorem.

8 See Oliveira et al. (2009) for an example of PID application with the graphical representation.
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It should be observed that, in the state-of-the-art, we do not have a general mathematical
analysis via an extension of Pontryagin’s Theorem for the cases in which the quasipolynomials
δ(z) = P(z, ez) have two or more real (noncommensurable) delays .
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1. Introduction     
1.1 Classes of systems to be considered 
It should be noticed that in some systems we must consider their character of dynamic and 
static state at the same time. Singular systems (also referred to as degenerate, descriptor, 
generalized, differential-algebraic systems or semi-state) are those, the dynamics of which 
are governed by a mixture of algebraic and differential (difference) equations. Recently 
many scholars have paid much attention to singular systems and have obtained many good 
consequences. The complex nature of singular systems causes many difficulties in the 
analytical and numerical treatment of such systems, particularly when there is a real need 
for their control. 
It is well-known that singular systems have been one of the major research fields of control 
theory. During the past three decades, singular systems have attracted much attention due 
to the comprehensive applications in economics as the Leontief dynamic model (Silva & Lima 
2003), in electrical (Campbell 1980) and mechanical models (Muller 1997), etc. Discussion of 
singular systems originated in 1974 with the fundamental paper of (Campbell et al. 1974) and 
latter on the anthological paper of (Luenberger 1977). 
The research activities of the authors in the field of singular systems stability have provided 
many interesting results, the part of which were documented in the recent references. Still 
there are many problems in this field to be considered. This chapter gives insight into a 
detailed preview of the stability problems for particular classes of linear continuous and 
discrete time delayed systems. Here, we present a number of new results concerning 
stability properties of this class of systems in the sense of Lyapunov and non-Lyapunov and 
analyze the relationship between them. 

1.2 Stability concepts 
Numerous significant contributions have been made in the last sixty years in the area of 
Lyapunov stabilty for different classes of systems. Listing all contributions in this, always 
attractive area, at this point would represent a waste of time, since all necessary details and 
existing results, for so called normal systems, are very well known.  
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But in practice one is not only interested in system stability (e.g. in sense of Lyapunov), but 
also in bounds of system trajectories. A system could be stable but completely useless 
because it possesses undesirable transient performances. Thus, it may be useful to consider 
the stability of such systems with respect to certain sub-sets of state-space, which are a priori 
defined in a given problem.  
Besides, it is of particular significance to concern the behavior of dynamical systems only 
over a finite time interval. These bound properties of system responses, i. e. the solution of 
system models, are very important from the engineering point of view.  
Realizing this fact, numerous definitions of the so-called technical and practical stability 
were introduced. Roughly speaking, these definitions are essentially based on the 
predefined boundaries for the perturbation of initial conditions and allowable perturbation 
of system response. In the engineering applications of control systems, this fact becomes 
very important and sometimes crucial, for the purpose of characterizing in advance, in 
quantitative manner, possible deviations of system response. Thus, the analysis of these 
particular bound properties of solutions is an important step, which precedes the design of 
control signals, when finite time or practical stability concept are concerned. 

2. Singular (descriptor) systems 
2.1 Continuous singular systems 
2.1.1 Continuous singular systems – stability in the sense of Lyapunov 
Generally, the time invariant continuous singular control systems can be written, as: 

 ( ) ( ) ( ) ( )0 0,E t A t t t= =x x x x ,  (1) 

where ( ) nt ∈x  is a generalized  state space (co-state, semi-state) vector, n nE ×∈  is a 
possibly singular matrix, with rank E r n= < .  
Matrices E and A are of the appropriate dimensions and are defined over the field of real 
numbers.  
System (1) is operatinig in a free regime and no external forces are applied on it. It should be 
stressed that, in a general case, the initial conditions for an autonomus and a system 
operating in the forced regime need not be the same.  
System models of this form have some important advantages in comparison with models in 
the normal form, e.g. when E I=  and an appropriate discussion can be found in (Debeljkovic et 
al. 1996, 2004).  
The complex nature of singular systems causes many difficultes in analytical and numerical 
treatment that do not appear when systems represented in the normal form are considered. 
In this sense questions of existence, solvability, uniqueness, and smothness are presented 
which must be solved in satisfactory manner. A short and concise, acceptable and 
understandable explanation of all these questions may be found in the paper of (Debeljkovic 
2004). 
STABILITY DEFINITIONS 
Stability plays a central role in the theory of systems and control engineering. There are 
different kinds of stability problems that arise in the study of dynamic systems, such as 
Lyapunov stability, finite time stability, practical stability, technical stability and BIBO 
stability. The first part of this section is concerned with the asymptotic stability of the 
equilibrium points of linear continuous singular systems.   
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As we treat the linear systems this is equivalent to the study of the stability of the systems.  
The Lyapunov direct method (LDM) is well exposed in a number of very well known 
references.  
Here we present some different and interesting approaches to this problem, mostly based on 
the contributions of the authors of this paper. 
Definition 2.1.1.1 System (1) is regular if there exist s ∈C , ( )det 0sE A− ≠ , (Campbell et al. 
1974). 
Definition 2.1.1.2 System (1) with A I=  is exponentially stable if one can find two positive 
constants 1 2,c c  such that ( ) ( )1

2 0c tt c e− ⋅≤ ⋅x x  for every solution of (1), (Pandolfi 1980). 

Definition 2.1.1.3 System (1) will be termed asymptotically stable if and only if, for all 
consistent initial conditions 0x , ( ) ast t→ → ∞x 0 , (Owens  & Debeljkovic 1985). 

Definition 2.1.1.4 System (1) is asymptotically stable if all roots of ( )det sE A− , i.e. all finite 
eigenvalues of this matrix pencil, are in the open left-half complex plane, and system under 
consideration is impulsive free if there is no 0x  such that ( )tx exhibits discontinuous 
behaviour  in the free regime, (Lewis 1986). 
Definition 2.1.1.5 System (1) is called asymptotically stable if and only if all finite eigenvalues 

iλ , i = 1, … , 1n , of the matrix pencil ( )E Aλ −  have negative real parts, (Muller 1993). 
Definition 2.1.1.6 The equilibrium =x 0 of system (1) is said to be stable if for every 0ε > , 
and for any 0t ∈ ℑ , there exists a ( )0, 0tδ δ ε= > , such that ( )0 0, ,t t ε<x x  holds for all 

0t t≥ , whenever 0 k∈x W  and 0 δ<x ,  where ℑ  denotes time interval such that 

0 0, , 0t tℑ = + ∞ ≥⎡ ⎡⎣ ⎣ ,  and kW  is the subspace of consistent intial conditions (Chen & Liu 

1997). 
Definition 2.1.1.7 The equilibrium =x 0  of a system (1) is said to be unstable if there exist a 

0ε > , and  0t ∈ ℑ , for any 0δ > , such that there exists a 0t t∗ ≥ , for which ( )0 0, ,t t ε∗ ≥x x  

holds, although 0 k∈x W 1 and 0 δ<x , (Chen & Liu 1997). 

Definition 2.1.1.8 The equilibrium =x 0  of a system (1) is said to be attractive if for every 
0t ∈ ℑ , there exists an ( )0 0tη η= > , such that  ( )0 0lim , ,

t
t t

→∞
=x x 0 , whenever 0 k∈x W  and 

0 η<x ,  (Chen  & Liu 1997). 
Definition 2.1.1.9 The equilibrium =x 0  of a singular system (1) is said to be asymptotically 
stable if it is stable and attractive, (Chen & Liu  1997). 
 Definition 2.1.1.5 is equivalent to ( )lim

t
t

→+∞
=x 0 . 

Lemma 2.1.1.1 The equilibrium =x 0  of a linear singular system (1) is asymptotically stable if 
and only if it is impulsive-free, and ( ),E Aσ −⊂ C , (Chen & Liu  997). 

                                                 
1 The solutions of continuous singular system models in this investigation are continuously 
differentiable functions of time t  which satisfy the considered equations of the model. Since for 
continuous singular systems not all initial values 0x of ( )tx  will generate smooth solution, those that 
generate such solutions (continuous to the right) we call consistent. Moreover, positive solvability 
condition guarantees uniqueness and closed form of solutions to (1). 
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Lemma 2.1.1.2 The equilibrium =x 0  of a system (1) is asymptotically stable if and only if it is 
impulsive-free, and ( )lim

t
t

→∞
=x 0 , (Chen & Liu 1997). 

Due to the system structure and complicated solution, the regularity of the systems is the 
condition to make the solution to singular control systems exist and be unique.  
Moreover if the consistent initial conditions are applied, then the closed form of solutions 
can be established. 
STABILITY THEOREMS 

Theorem 2.1.1.1 System (1), with A I= , I  being the identity matrix, is exponentially stable if 
and only if the eigenvalues of  E  have non positive real parts,  (Pandolfi 1980). 
Theorem 2.1.1.2 Let 

k
IW be the matrix which represents the operator on n  which is the 

identity on kW  and the zero operator on kW .  
 System  (1), with A I= ,  is stable if an ( )n n×  matrix P  exist, which is the solution of the 
matrix equation: 

  
k

TE P PE I+ = − W ,  (2)  

with the following properties: 

 P = TP ,  (3) 

  ,P = ∈q 0 q V , (4) 

  0, ,T
kP > ≠ ∈q q q 0 q W , (5) 

where: 

 ( )D
k I EE= ℵ −W  (6)  

 ( )DEE= ℵV , (7) 

where kW  is the subspace of  consistent  intial conditions, (Pandolfi  1980) and ( )ℵ denotes 
the kerrnel or null space of the matrix ( ) . 
Theorem 2.1.1.3 System (1) is asymptotically stable if and only if (Owens & Debeljkovic 1985): 
a. A is invertible.  
b. A  positive-definite, self-adjoint operator P  on n   exists,  such that: 

  T TA PE E PA Q+ = − ,  (8) 

where Q  is self-adjoint and positive in the sense that: 

 ( ) ( ) 0T t Q t >x x  for all ( ) { }\kt ∗∈x 0W .  (9) 

Theorem 2.1.1.4  System (1)  is asymptotically stable if and only if (Owens & Debeljkovic 1985): 
a. A  is invertible, 
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b.  there exists a positive-definite, self-adjoin operator P , such that: 

 ( )( ) ( ) ( ) ( )T T T Tt A PE E PA t t I t+ = −x x x x ,  (10) 

 for all k∗∈x W ,  where  k∗W  denotes the subspace of consistent initial conditions. 

2.1.2 Continuous singular systems – stability over finite time interval 
Dynamical behaviour of the system (1) is defined over time interval { }0 0:t t t t Tℑ = ≤ ≤ + , 
where quantity T  may be either a positive real number or symbol +∞ , so finite time 
stability and practical stability can be treated simultaneously. Time invariant sets, used as 
bounds of system trajectories, are assumed to be open, connected and bounded.  
Let index β  stand for the set of all allowable states of system and index α for the set of all 
initial states of the system, such that α β⊆S S .  
In general, one may write: 

 ( ){ } ( ) { }: , \ 0kQ
t t℘ = <℘ ∈x x x WS , (11) 

where Q  will be assumed to be symmetric, positive definite, real matrix and where kW  
denotes the sub-space of consistent  initial conditions generating the smooth solutions.  
A short and concise, acceptable and understandable explanation of all these questions can 
be found in the paper of (Debeljkovic 2004). Vector of initial conditions is consistent if  there 
exists continuous, differentiable solution to (1).  
A geometric treatment (Owens & Debeljkovic 1985) yields kW  as the limit of the sub-space 
algorithm: 

  ( )1
0 1, , 0n

j jA E j−
+= = ≥W W W ,  (12) 

where ( )1A− ⋅  denotes inverse image of ( )⋅  under the operator A . 
Campbell et al. (1974) have shown that sub-space kW represents the set of vectors satisfying: 

 ( ) 0
ˆ ˆDI E E− =x 0 ,  or  ( )ˆ ˆD

k I E E= ℵ −W ,  (13) 

where ( ) 1Ê E A Eλ −= − . c  is any complex scalar such that: 

 ( )det 0E Aλ − ≠  or ( ) { }0k E∩ℵ =W .  (14) 

This condition guarantees the uniqueness of solutions that are generated by kW  and 

( )E Aλ −  is invertible for some λ ∈ . The null space of matrix F  is denoted by ( )Fℵ , 

range space with ( )Fℜ  and superscript " D " is used to indicate Drazin inverse. Let 

( ) ( )
t

⋅
x  be any vector norm (i. g. 1,2,⋅ = ∞ ) and ( )⋅  the matrix norm induced by this 

vector. 
The matrix measure, for our purposes, is defined as follows: 
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 ( ) ( )1 max
2 ii

F F Fμ λ ∗= + ,  (15) 

for any matrix n nF ×∈ . Upper index ∗  denotes transpose conjugate. In case of n nF ×∈  it 
follows TF F∗ = , where superscript T  denotes  transpose. 
The value of a particular solution at the moment t , which at the moment 0t =  passes 
through the point 0x , is denoted as ( )0,tx x , in abbreviated notation ( )tx .  
The set of all points iS , in the phase space ,n n

i ⊆S , which generate smooth solutions 
can be determined via the Drazin inverse technique.  
STABILITY DEFINITIONS 

Definition 2.1.2.1 System (1) is finite time stable w.r.t.{ }, , ,Qα β α β, , ℑ <  iff ( )0 0 kt∀ = ∈x x W , 

satisfying 2
0 Q α<x , implies ( ) 2

,
Q

t tβ< ∀ ∈ ℑx , (Debeljkovic & Owens 1985). 

Definition 2.1.2.2 System (1) is finite time instable w.r.t. { }, ,Qα β α β, , ℑ < , iff for 

( )0 0 kt∀ = ∈x x W , satisfying  2
0 Q α<x , exists  t∗ ∈ ℑ   implying ( ) 2

Q
t β∗ ≥x , (Debeljkovic & 

Owens 1985). 
Preposition 2.1.2.1 If ( ) ( ) ( )T t M tϕ =x x x  is quadratic form on n  then it follows that there 

exist numbers ( )min Mλ  and ( )max Mλ , satisfying ( ) ( )min maxM Mλ λ−∞ < ≤ < +∞ , such 
that: 

 ( ) ( ) ( )
( ) ( ) { }min max , \

T

k
t M t

M M
V

λ λ≤ ≤ ∀ ∈
x x

x 0
x

W .  (16) 

If TM M=  and ( ) ( ) { }0, \T
kt M t > ∀ ∈x x x 0W , then ( )min 0Mλ >  and ( )max 0Mλ > , 

where ( )min Mλ  and ( )max Mλ  are defined in such way: 

  

( )
( ) ( ) { }

( ) ( )

( )
( ) ( ) { }

( ) ( )

min

max

, \ ,
min ,

1

, \ ,
max .

1

T
k

T T

T
k

T T

t M t
M

t E PE t

t M t
M

t E PE t

λ

λ

⎧ ⎫∈⎪ ⎪= ⎨ ⎬
=⎪ ⎪⎩ ⎭

⎧ ⎫∈⎪ ⎪= ⎨ ⎬
=⎪ ⎪⎩ ⎭

x x x 0

x x

x x x 0

x x

W

W
 (17) 

It is convenient to consider, for the purposes of this exposure, the aggregation function for 
the system (1) in the following manner: 

 ( )( ) ( ) ( )T TV t t E PE t=x x x ,   (18) 

with particular choice P I= , I  being identy matrix. 
STABILITY THEOREMS 

Theorem 2.1.2.1 The system is finite stable with respect to { }, ,α β α β, ℑ < , if the following 
conditiones are satisfied: 
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(i) ( )
( )

2

1

Q
Q

γ
β α

γ
>   (19) 

(ii) ( ) ( )
( )

2

1
ln ln ,

Q
Q t

Q
γ

β α
γ

> Λ + ∀ ∈ ℑ .  (20) 

with ( )max Qλ  as in Preposition 2.1.2.1,  (Debeljkovic & Owens 1985). 

Preposition 2.1.2.2 There exists matrix 0TP P= > , such that ( ) ( )1 2 1Q Qγ γ= = , (Debeljkovic 

& Owens 1985). 
Corollary 2.1.2.1 If 1β α > , there exist choice of P  such that 

 ( )
( )

2 Q
Q

γβ
α γ1

> . (21) 

The practical meaning of this result is that condition (i) of Definition 2.1.2.1 can be satisfied 
by initial choice of free parameters of matrix P . Condition (ii) depends also on the system 
data and hence is more complex but it is also natural to ask whether we can choose P  such 
that ( )max 0Qλ < , (Debeljkovic & Owens 1985). 
Theorem  2.1.2.2 System (1)  is finite time stable  w.r.t. { }, , ,Iα β ℑ   if the following condition is 
satisfied 

  ( ) ,CSS t tβ
α

Φ < ∀ ∈ ℑ ,  (22) 

( )CSS tΦ  being the fundamental matrix of linear singular system (1),  (Debeljkovic et al. 1997). 
Now we apply matrix mesure approach. 
Theorem 2.1.2.3 System (1) is finite time stable w.r.t. { }, , ,Iα β ℑ , if the following condition is 
satisfied (Debeljkovic et al. 1997). 

 ( ) ,te tμ β
α

ϒ ⋅ < ∀ ∈ ℑ ,  (23) 

where: 

 ( ) ( )1 1ˆ ˆˆ ˆ, ,DE A A sE A A E sE A E− −ϒ = = − = − .  (24) 

Starting with explicit solution of system (1), derived in (Campbell 1980). 

 ( ) ( )0
ˆˆ

0 0 0
ˆ ˆ,

DE A t t Dt e EE−= =x x x x , (25) 

and differentiating equitation (25), one gets: 

 ( ) ( )ˆˆ
0

ˆ ˆˆ ˆDD E A t Dt E Ae E A t⋅= ⋅ =x x x ,  (26)  

so only the regular singular systems are treated with matrices given in (24). 
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Theorem 2.1.2.4 For given constant matrix ˆˆ DE A  any solution of (1) satisfies the following 
inequality (Kablar & Debeljkovic 1998). 

 ( ) ( )( ) ( ) ( ) ( )( )0 0
ˆ ˆˆ ˆ

0 0 ,
D DE A t t E A t t

t e t t e t
μ μ− − − −

≤ ≤ ∀ ∈ ℑx x x  (27) 

Theorem 2.1.2.5 In order for the system (1) to be finite time stable w.r.t. { }, ,Iα β α β, , ℑ < , it is 
necessary that the following condition is satisfied: 

 ( ) ( )0
ˆˆ

,
DE A t t

e t
μ β

δ
− − ⋅ −

< ∀ ∈ ℑ ,  (28) 

where 0 δ α< ≤ , (Kablar & Debeljkovic 1998). 
Theorem  2.1.2.6 In order for system (1) to be finite time instable w.r.t. { }, ,Iα β α β, , ℑ < , it is 

necessary that there exists t∗ ∈ ℑ  such that the following condition is satisfied: 

 ( ) ( )0
ˆˆ

,
DE A t t

e t
μ β

α

∗⋅ − ∗≥ ∈ ℑ .  (29) 

Theorem 2.1.2.7 System (1) is finite time instable w.r.t. { }, ,Iα β α β, , ℑ < , if , 0δ δ α∃ < ≤  and 
t∗ ∈ ℑ  such that the following condition is satisfied: 

 ( ) ( )0
ˆˆ

,
DE A t t

e t
μ β

δ

∗− − ⋅ − ∗< ∈ ℑ .  (30) 

Finally, we present Bellman–Gronwall  approach to derive our  results, earlier given in Theorem 
2.1.2.7. 
Lemma 2.1.2.1 Suppose the vector ( )0,t tq  is defined in the following manner (Debeljkovic & 
Kablar 1999): 

 ( ) ( ) ( )0 0 0
ˆ ˆ, , Dt t t t E E t= Φq v .  (31) 

So if: 

 ( ) ( ) ( )0 0 0
ˆ ˆ, , DE t t E t t E E t= Φq v ,  (32) 

then: 

  ( ) ( ) ( )( )max 0
2 2

0 0, T T
M t t

E E E E
t t t eλ −≤q v ,  (33) 

where: 

 
( ) ( ) ( ) ( ) { }

( ) ( )
max 0 0 0

0 0

max{ , , : , \ 0 ,

, , 1, }

T
k

T T T T

M t t t t t t

t t E E t t A E E A

λ = Ξ ∈

= Ξ = +

q q q

q q

W
  (34) 

 ( ) ( )0 0 0,t t t=v q . (35) 
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Using this approach the results of Theorem 2.1.2.1 can be reformulate in the following 
manner. 

Theorem 2.1.2.8 System (1) is finite time stable w.r.t. ( ){ }2
, , , ,

Q
aα β β⋅ ℑ < , if the following 

condition is satisfied: 

  ( ) ( )max 0 ,t te tλ β
α

Ξ ⋅ − < ∀ ∈ ℑ ,  (36) 

with ( )max Mλ given (34), (Debeljkovic & Kablar 1999). 

2.2 Discrete descriptor system 
2.2.1 Discrete descriptor system – stability in sense of Lyapunov 
Generally, the time invariant linear discrete descriptor control systems can be written, as:  

 ( ) ( ) ( )0 01 ,E k A k k+ = =x x x x ,  (37) 

where ( ) nt ∈x  is a generalized state space (co-state, semi-state) vector, n nE ×∈  is a 
possibly singular matrix, with rank E r n= < . Matrices E and A are of the appropriate 
dimensions and are defined over the field of real numbers.  
NECESSARY CONSIDERATIONS 
In the discrete case, the concept of smoothness has little meaning but the idea of consistent 
initial conditions being these initial conditions 0x , that generate solution sequences 

( )( ): 0k k ≥x  has a physical meaning. 

The fundamental geometric tool in the characterization of the subspace of consistent initial 
conditions dW ,is the subspace sequence: 

 ,0
n

dW = R , ( ) ( )1
, 1 , , 0d j d jA E j−

+ = ≥W W .  (38) 

Here ( )1A− ⋅  denotes the inverse image of ( )⋅  under the operator A  and we will denote by 

( )Fℵ  and ( )Fℜ  the kernel and range of any operator F , respectively. 

Lemma 2.2.1.1 The subspace sequence { },0 ,1 ,2, , , ...d d dW W W  is nested in the sense that: 

 ,0 ,1 ,2 ,3d d d d⊃ ⊃ ⊃ ⊃W W W W .  (39) 

Moreover: 

 ( ) ( ), , 0d jA jℵ ⊂ ≥W , (40) 

and there exists an integer 0k ≥ ,  such that: 

 , 1 ,d k d k+ =W W ,   (41) 

and hence , 1 ,d k d k+ =W W  for 1j ≥ .  
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If k∗  is the smallest such integer with this property, then: 

 ( ) { } ( ), 0 ,d k E k k∗∩ℵ = ≥W ,  (42) 

provided that ( )E Aλ −  is invertible for some λ ∈ R ,  (Owens & Debeljkovic 1985). 
Theorem 2.2.1.1 Under the conditions of Lemma 2.2.1.1, 0x  is a consistent initial condition 
for (37) if 0 , .d k∗∈x W  Moreover 0x  generates a unique solution ( ) ( ), , 0d kt k∗∈ ≥x W  that is 

real - analytic on { }: 0k k ≥ ,  (Owens & Debeljkovic 1985). 
Theorem 2.2.1.1 is the geometric counterpart of the algebraic results of Campbell (1980). A 
short and concise, acceptable and understandable explanation of all these questions can be 
found in the papers of (Debeljkovic 2004). 
Definition 2.2.1.1 The linear discrete descriptor system (37) is said to be regular if 

( )det sE A−  is not identically equal to zero, (Dai 1989). 
Remark 2.2.1.1 Note that the regularity of matrix pair (E, A) guarantees the existence and 
uniqueness of solution x (⋅) for any specified initial condition, and the impulse immunity 
avoids impulsive behavior at initial time for inconsistent initial conditions.  It is clear that, 
for nontrivial case, det E ≠ 0, impulse immunity implies regularity. 
Definition 2.2.1.2 The linear discrete descriptor system (37) is assumed to be non-degenerate 
(or regular), i.e. ( )det 0zE A− ≠ . Otherwise, it will be called degenerate, (Syrmos et al. 1995).  

If ( )zE A−  is non-degenerate, we define the spectrum of ( )zE A− , denoted as { },E Aσ  as 
those isolated values of z where ( )det 0zE A− ≠  fails to hold. The usual spectrum of 
( )zI A−  will be denoted as { }Aσ . 
Note that owing to (possible) singularity of E , { },E Aσ  may contain finite and infinite 
values of z .  
Definition 2.2.1.3 The linear discrete descriptor system (37) is said to be causal if (37) is 
regular and ( )degree det rankzE A E− = , (Dai 1989). 
Definition 2.2.1.4 A pair (E, A) is said to be admissible if it is regular, impulse-free and stable, 
Hsiung, Lee (1999). 
Lemma 2.2.1.2 The linear discrete-time descriptor system (37) is regular, causal and stable if 
and only if there exists an invertible symmetric matrix n nH ×∈ R  such that the following two 
inequalities holds (Xu & Yang  1999):  

  0TE HE ≥ , (43) 

  0T TA HA E HE− < .  (44) 

STABILITY DEFINITIONS 
Definition 2.2.1.5 Linear discrete descriptor system (37) is said to be stable if and only if (37) 
is regular and all of its finite poles are within region Ω(0,1), (Dai 1989).  
Definition 2.2.1.6 The system in (37) is asymptotically stable if all the finite eigenvalues of 
the pencil ( )zE A−  are inside the unit circle, and anticipation free if every admissible ( )0x  
in (37) admits one-sided solutions,  (Syrmos et al. 1995). 
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Definition 2.2.1.7 Linear discrete descriptor system (37) is said to be asymptotically stable if, 
for all consistent initial conditions 0x , we have that ( )t →x 0  as t → +∞ , (Owens & 
Debeljkovic 1985).  
STABILITY THEOREMS 
First, we present the fundamental work in the area of stability in the sense of Lyapunov 
applied to the linear discrete descriptor systems,  (Owens & Debeljkovic 1985). 
Our attention is restricted to the case of singular (i.e. noninvertible) E  and the construction 
of geometric conditions on 0x  for the existence of causal solutions of (37) in terms of the 
relative subspace structure of matrices E  and A . The results are hence a geometric 
counterpart of the algebraic theory of (Campbell 1980) who established the required form of 

0x  in terms of the Drazin inverse and the technical trick of replacing E  and A by 
commuting operators. 
The ideas in this paper work with E  and A  directly and commutability is not assumed. The 
geometric theory of consistency leads to a natural class of positive-definite quadratic forms 
on the subspace containing all solutions. This fact makes possible the construction of a 
Lyapunov stability theory for linear discrete descriptor systems in the sense that asymptotic 
stability is equivalent to the existence of symmetric, positive-definite solutions to a weak form 
of Lyapunov equation. 
Throughout this exposure it is assumed that ( )E Aλ −  is invertible at all but a finite number 

of points λ ∈C  and hence that if a solution ( ) ( ), 0k k ≥x  of ( )( ): 0,1,...k k =x  exists for a 

given choice of 0x , it  is unique, (Campbell 1980). 
The linear discrete descriptor system is said to be stable if (37) is regular and all of its finite 
poles are within region Ω(0,1), (Dai 1989), so careful investigation shows there is no need for 
the matrix A  to be invertible, in comparison with continuous case, see (Debeljkovic et al. 
2007) so it could be noninvertible.  
Theorem 2.2.1.2 The linear discrete descriptor system (37) is asymptotically stable if, and 
only if, there exists a real number 0λ∗ >  such that, for all λ  in the range 0 λ λ∗< < , there 
exists a self-adjoint, positive-definite operator Hλ  in nR  satisfying: 

 ( ) ( )T TA E H A E E H E Qλ λ λλ λ− − − = − ,  (45) 

for some self-adjoint operator Qλ  satisfying the positivity condition  (Owens & Debeljkovic 
1985): 

  ( ) ( ) ( ) { },0, \ 0T
d kt Q t tλ ∗∀ ∈x x x W> .  (46) 

Theorem 2.2.1.3 Suppose that matrix A  is invertible. Then the linear discrete descriptor 
system (37) is asymptotically stable if, and only if, there exists a self-adjoint, positive-definite 
solution H  in nR  satisfying 

   T TA HA E HE Q− = − ,  (47) 

where Q  is self-adjoint and positive in the sense that (Owens & Debeljkovic 1985): 
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  ( ) ( ) ( ) { },0, \ 0T
d kt Q t t ∗∀ ∈x x x W> .  (48) 

Theorem 2.2.1.4 The linear discrete descriptor system (37) is asymptotically stable if and only if 
there exists a real number 0λ∗ >  such that, for all λ  in the range 0 λ λ∗< < , there exists a 
self-adjoint, positive-definite operator Hλ  in nR  satisfying Owens, Debeljkovic (1985): 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ,,TT T T
d kt A E H A E E H E t t t tλ λλ λ ∗− − − = − ∀ ∈x x x x x W .  (49) 

Corollary 2.2.1.4 If matrix A  is invertible, then the linear discrete descriptor system (37) is 
asymptotically stable if and only if (49) holds for 0λ =  and some self-adjoint, positive-
definite operator 0H , (Owens & Debeljkovic 1985). 

2.2.2 Discrete descriptor system – stability over infinite time interval 
Dynamical behaviour of system (37) is defined over time interval ( ){ }0 0, Nk k k= +K , where 

quantity Nk  may be either a positive real number or symbol +∞ , so finite time stability and 
practical stability can be treated simultaneously.  
Time invariant sets, used as bounds of system trajectories, are assumed to be open, 
connected and bounded.  
Let index β  stands for the set of all allowable states of system and index α  for the set of all 
initial states of the system, such that ( )0 0 dk∀ = ∈x x W .  
Sets are assumed to be open, connected and bounded and defined by (11) in discrete case 
sense. 
Under assumption that discrete version of the Preposition 2.1.2.1 is acceptable here, without 
any limitation, we can give the following Definitions. 

STABILITY DEFINITIONS 

Definition 2.2.2.1 System (37) is finite time stable w.r.t { }, , , , dGα β K W , if and only if a 

consistent initial condition, 0 d∈x W , satisfying 2
0 , T

G G E PEα =x < , implies 

( ) 2
,

G
k kβ ∀ ∈x K< . G  is chosen to represent physical constraints on the system variables 

and it is assumed, as before, to satisfy TG G= , ( ) ( ) ( ) { }0, \ 0T
dk G k k> ∀ ∈x x x W , 

(Debeljkovic 1985, 1986), (Debeljkovic, Owens 1986), (Owens, Debeljkovic 1986). 
Definition 2.2.2.2 System (37) is finite time unstable w.r.t respect to { }, , , , qK G Wα β , if and 

only if there is a consistent initial condition, satisfying 2
0 ,G αx < ,TG E PE=  and there exists 

discrete moment k K∗ ∈ , such that the next condition is fulfilled 

( ) 2
* *, for some ,

G
x k kβ> ∈K  (Debeljkovic & Owens 1986), (Owens & Debeljkovic 1986). 

STABILITY THEOREMS 

Theorem 2.2.2.1 System (37) is finite time stable w.r.t  { }, , ,α β β αK > , if the following 
condition is satisfied:  
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  ( )max / ,k Q kλ β α< ∀ ∈K ,  (50) 

where ( )max
k Qλ  is defined by: 

 ( ) ( ) ( ) ( ) { } ( ) ( ){ }T T T T
max max : \ 0 , 1k

dQ k A PA k k k E PE kλ = ∈ =
x

x x x x xW  (51) 

with matrix 0,TP P= >  (Debeljkovic  1986), (Debeljkovic & Owens  1986). 
Theorem 2.2.2.2 System (37) is finite time unstable w.r.t { }, , ,α β β αK >  if there exists a 

positive scalar 0,γ α∈ ⎤ ⎡⎦ ⎣  and a discrete moment k∗ , ( )0k k∗∃ > ∈K  such that the 

following condition is satisfied (Debeljkovic & Owens 1986):  

 ( )min / , forsomek Q kλ β γ
∗ ∗> ∈K   (52) 

where ( )k Qλ  being defined by:  

 ( ) ( ) ( ) ( ) { } ( ) ( ){ }T T T T
min min : \ 0 , 1 .k

dQ k A PA k k k E PE kλ = ∈ =
x

x x x x xW   (53) 

Theorem 2.2.2.3. System (37) is finite time stable w.r.t  { }, , ,α β β αK > ,  if the following 
condition is satisfied:  

 ( ) / , .k k Kβ αΨ < ∀ ∈   (54) 

where: ( ) ( )ˆˆ kDk E AΨ =   and ( ) 1ˆ ,E cE A E−= − ( ) 1Â cE A A−= − , (Debeljkovic  1986). 

3. Conclusion 
This chapter considers important stability issues of linear continuous singular and discrete 
descriptor systems over infinite and finite time interval. Here, we present a number of new 
results concerning stability properties of this class of systems in the sense of Lyapunov and 
non-Lyapunov and analyze the relationship between them over finite and infinite time 
interval. 
In the first part of the chapter continuous singular systems were considered. Basic stability 
concepts were introduced, starting with a preview of important stability definitions. 
Stability in the sense of Lyapunov, as well as the stability over finite time interval were 
addressed in detail.  
Second part of this chapter deals with stability issues for discrete descriptor systems in the 
sense of Lyapunov and over infinite and finite time interval. 
The chapter also represents a comprehensive survey on important stability theorems which 
apply to studied classes of systems. 
The geometric theory of consistency leads to the natural class of positive definite quadratic 
forms on the subspace containing all solutions. This fact makes possible the construction of 
Lyapunov stability theory even for the time delay systems in that sense that asymptotic 
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stability is equivalent to the existence of symmetric, positive definite solutions to a weak 
form of Lyapunov continuous (discrete) algebraic matrix equation (Owens, Debeljkovic 1985) 
respectively, incorporating condition which refers to time delay term. 
Time delay systems represent a special and very important class of systems and therefore 
their investigation deserves special attention. Detailed consideration of time delayed 
systems, together with important new results of the authors, will be presented in the 
subsequent chapter, which concerns continuous singular as well as discrete descriptor time 
delay systems. Presented chapter is therefore a necessary premise as an introduction to the 
stability issues of continuous singular and discrete descriptor time delay system, which 
provides consistency and comprehensibility of the presented topics. 
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1. Introduction  
The problem of investigation of time delay systems has been exploited over many years. 
Time delay is very often encountered in various technical systems, such as electric, 
pneumatic and hydraulic networks, chemical processes, long transmission lines, etc. The 
existence of pure time lag, regardless if it is present in the control or/and the state, may 
cause undesirable system transient response, or even instability. Consequently, the problem 
of stability analysis for this class of systems has been one of the main interests for many 
researchers. In general, the introduction of time delay factors makes the analysis much more 
complicated.  
When the general time delay systems are considered, in the existing stability criteria, mainly 
two ways of approach have been adopted. Namely, one direction is to contrive the stability 
condition which does not include the information on the delay, and the other is the method 
which takes it into account. The former case is often called the delay-independent criteria 
and generally provides simple algebraic conditions. In that sense the question of their 
stability deserves great attention. We must emphasize that there are a lot of systems that 
have the phenomena of time delay and singular characteristics simultaneously. We denote 
such systems as the singular (descriptor) differential (difference) systems with time delay.  
These systems have many special properties. If we want to describe them more exactly, to 
design them more accurately and to control them more effectively, we must pay tremendous 
endeavor to investigate them, but that is obviously a very difficult work. In recent references 
authors have discussed such systems and got some consequences. But in the study of such 
systems, there are still many problems to be considered. 

2. Time delay systems 
2.1 Continuous time delay systems 
2.1.1 Continuous time delay systems – stability in the sense of Lyapunov 
The application of Lyapunov’s direct method (LDM) is well exposed in a number of very well 
known references. For the sake of brevity  contributions in this field are omitted here. The 
part of only interesting paper of (Tissir & Hmamed 1996), in the context of these 
investigations, will be presented later. 
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2.1.2 Continuous time delay systems – stability over finite time interval 
A linear, multivariable time-delay system can be represented by differential equation: 

 ( ) ( ) ( )0 1t A t A t τ= + −x x x ,  (1) 

and with associated function of initial state: 

  ( ) ( ) , 0xt t tτ= − ≤ ≤x ψ .  (2) 

Equation (1) is referred to as homogenous, ( ) nt ∈x  is a state space vector, 0A , 1A , are 
constant system matrices of appropriate dimensions, and τ is pure time delay, 

( )., 0constτ τ= > . 
Dynamical behavior of the system (1) with initial functions (2) is defined over continuous 
time interval { }0 0,t t Tℑ = + , where quantity T  may be either a positive real number or 
symbol +∞, so finite time stability and practical stability can be treated simultaneously. It is 
obvious that ℑ∈ . Time invariant sets, used as bounds of system trajectories, satisfy the 
assumptions stated in the previous chapter (section 2.2). 
STABILITY DEFINITIONS 
In the context of finite or practical stability for particular class of nonlinear singularly 
perturbed multiple time delay systems various results were, for the first time, obtained in Feng, 
Hunsarg (1996). It seems that their definitions are very similar to those in Weiss, Infante (1965, 
1967), clearly addopted to time delay systems. 
It should be noticed that those definitions are significantly different from definition 
presented by the autors of this chapter. 
In the context of finite time and practical stability for linear continuous time delay systems, 
various results were first obtained in (Debeljkovic et al. 1997.a, 1997.b, 1997.c, 1997.d), 
(Nenadic et al. 1997). 
In the paper of (Debeljkovic et al. 1997.a) and (Nenadic et al. 1997) some basic results of the area 
of finite time and practical stability were extended to the particular class of linear continuous 
time delay systems. Stability sufficient conditions dependent on delay, expressed in terms of 
time delay fundamental system matrix, have been derived. Also, in the circumstances when it 
is possible to establish the suitable connection between fundamental matrices of linear time 
delay and non-delay systems, presented results enable an efficient procedure for testing 
practical as well the finite time stability of time delay system.  
Matrix measure approach has been, for the first time applied, in (Debeljkovic et al. 1997.b, 
1997.c, 1997.d, 1997.e, 1998.a, 1998.b, 1998.d, 1998.d) for the analysis of practical and finite 
time stability of linear time delayed systems. Based on Coppel’s  inequality and introducing 
matrix measure approach one provides a very simple delay – dependent sufficient 
conditions of practical and finite time stability with no need for time delay fundamental 
matrix calculation. 
In (Debeljkovic et al. 1997.c) this problem has been solved for forced time delay system. 
Another approach, based on very well known Bellman-Gronwall Lemma, was applied in 
(Debeljkovic et al. 1998.c), to provide new, more efficient sufficient delay-dependent 
conditions for checking finite and practical stability of continuous systems with state delay. 
Collection of all previous results and contributions was presented in paper (Debeljkovic et al. 
1999) with overall comments and slightly modified Bellman-Gronwall approach. 
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Finally, modified Bellman-Gronwall principle, has been extended to the particular class of 
continuous non-autonomous time delayed systems operating over the finite time interval, 
(Debeljkovic et al. 2000.a, 2000.b, 2000.c). 
Definition 2.1.2.1 Time delay system (1-2) is stable with respect to { }, , , , ,Tα β τ− x α β≤ , 

if for any trajectory ( )tx  condition 0 α<x  implies ( )t β<x  max, ,t T τ∀ ∈ −Δ Δ =⎡ ⎤⎣ ⎦ , 

(Feng, Hunsarg 1996). 
Definition 2.1.2.2 Time delay system (1-2) is stable with respect to { }, , , , ,Tα β τ− x  

γ α β< < , if for any trajectory ( )tx  condition 0 α<x ,  implies (Feng, Hunsarg 1996):  

i. Stability w.r.t. { }, , , , ,Tα β τ− x  

ii. There exist  0,t T∗ ∈ ⎤ ⎡⎦ ⎣  such that ( )t γ<x  for all ,t t T∗⎤ ⎡∀ ∈ ⎦ ⎣ . 

Definition 2.1.2.3 System (1) satisfying initial condition (2) is finite time stable with respect 
to ( ){ }, ,tζ β ℑ if and only if ( ) ( )x t tζ<ψ , implies ( ) ,t tβ< ∈ ℑx , ( )tζ  being scalar 

function with the property ( )0 ,tζ α< ≤  0 ,tτ− ≤ ≤ – τ ≤ t ≤ 0, where α  is a real positive 
number and β ∈  and β α> , (Debeljkovic et al. 1997.a, 1997.b, 1997.c, 1997.d), (Nenadic et al. 
1997). 
 

0 τ 2τ T t-τ

|x(t)|2

|ψx(t)|2
ζ (t)

β

α

 
Fig. 2.1 Illustration of preceding definition 
Definition 2.1.2.4 System (1) satisfying initial condition (2) is finite time stable with respect 
to. ( ) ( ){ }0, , , , 0t Aζ β τ μℑ ≠  iff ( ) , 0x t tα τ∈ ∀ ∈ − ,⎡ ⎤⎣ ⎦ψ S , implies ( )0 0, ,t t β∈x x S , 

0,t T∀ ∈ ⎡ ⎤⎣ ⎦  (Debeljkovic et al. 1997.b, 1997.c). 
Definition 2.1.2.5 System (1) satisfying initial condition (2) is finite time stable with respect 

to ( ){ }2 0, , , , 0Aα β τ μℑ ≠  iff ( ) ,x t tα τ∈ ∀ ∈ − , 0⎡ ⎤⎣ ⎦ψ S , implies ( )( )0 0, , ,t t t Sβ∈x x u , 

t∀ ∈ ℑ , (Debeljkovic et al. 1997.b, 1997.c). 
Definition 2.1.2.6 System (1) with initial function (2), is finite time stable with respect to 

{ }0 , , ,t α βℑ S S , iff ( ) 2 2
0 0t α= <x x , implies ( ) 2

,t tβ< ∀ ∈ ℑx , (Debeljkovic et al. 2010). 

Definition 2.1.2.7 System (1) with initial function (2), is attractive practically stable with 

respect to { }0 , , ,t α βℑ S S , iff ( ) 2 2
0 0 PP

t α= <x x , implies: ( ) 2
,

P
t tβ< ∀ ∈ ℑx , with property 

that: ( ) 2
lim 0

Pk
t

→∞
→x , (Debeljkovic et al. 2010). 
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STABILITY THEOREMS - Dependent delay stability conditions 
Theorem 2.1.2.1 System (1) with the initial function (2) is finite time stable with respect to 
{ }, , ,α β τ ℑ  if the following condition is satisfied 

 ( ) 2
1 2

/
|| || , 0,

1
t t T

A
β α
τ

Φ < ∀ ∈ ⎡ ⎤⎣ ⎦+
  (3) 

( )⋅  is Euclidean norm and ( )tΦ  is fundamental matrix of system (1), (Nenadic et al. 1997), 
(Debeljkovic et al. 1997.a). 
When 0τ =  or 1 0A = , the problem is reduced to the case of the ordinary linear systems, 
(Angelo 1974). 
Theorem 2.1.2.2 System (1) with initial function (2) is finite time stable w.r.t. { }, , , Tα β τ if 
the following condition is satisfied: 

 ( )0

1 2

/
, 0,

1
A t

e t T
A

μ β α
τ

< ∀ ∈ ⎡ ⎤⎣ ⎦+
, (4) 

where ( )⋅  denotes Euclidean norm, (Debeljkovic et al. 1997.b). 

Theorem 2.1.2.3 System (1) with the initial function (2) is finite time stable with respect to 

{ }2 0, , , , ( ) 0T Aα β τ μ ≠  if the following condition is satisfied:  

 ( )
( ) ( )

0

2 0( )1
2 0 1 2

/ , 0,
1 1

A t

A
e t T

A A e−−
< ∀ ∈ ⎡ ⎤⎣ ⎦

+ ⋅ ⋅ −

μ

μ τ

β α

μ
,  (5) 

(Debeljkovic et al. 1997.c, 1997.d). 
Theorem 2.1.2.4 System (1) with the initial function (2) is finite time stable with respect to 

( ){ }0, , , , 0T Aα β τ μ =  if the following condition is satisfied:  

 1 21 / , 0,A t Tτ β α+ < ∀ ∈ ⎡ ⎤⎣ ⎦ , (6) 

(Debeljkovic et al. 1997.d). 
Results that will be presented in the sequel enable to check finite time stability of the 
systems to be considered, namely the system given by (1) and (2), without finding the 
fundamental matrix or corresponding matrix measure. 
Equation (2) can be rewritten in it's general form as: 

 ( ) ( ) ( )0 , , 0 , 0x xt ϑ ϑ ϑ τ τ ϑ+ = ∈ − − ≤ ≤⎡ ⎤⎣ ⎦x ψ ψ C , (7) 

where 0t  is the initial time of observation of the system (1) and , 0τ−⎡ ⎤⎣ ⎦C  is a Banach space 
of continuous functions over a time interval of length τ , mapping the interval ( ) ,t tτ⎡ ⎤−⎣ ⎦  
into n  with the norm defined in the following manner: 

 ( )
0

max
τ ϑ

ϑ
− ≤ ≤

=ψ ψ
C

. (8) 



Stability of Linear Continuous Singular and Discrete Descriptor Time Delayed Systems   

 

35 

It is assumed that the usual smoothness conditions are present so that there is no difficulty 
with questions of existence, uniqueness, and continuity of solutions with respect to initial 
data. Moreover one can write: 

 ( ) ( )0 xt ϑ ϑ+ =x ψ ,  (9) 

as well as: 

 ( ) ( )( )0 0 , xt t ϑ=x f ψ . (10) 

Theorem 2.1.2.5 System given by (1) with initial function (2) is finite time stable w.r.t. 
{ }0, , ,tα β ℑ  if the following condition is satisfied: 

 ( )( ) ( )0 max
2 2

0 max1 ,t tt t e tσ βσ
α

−+ − < ∀ ∈ ℑ ,  (11) 

( )maxσ ⋅  being the largest singular value of matrix ( )⋅ , namely 

 ( ) ( )max max 0 max 1A Aσ σ σ= + . (12) 

(Debeljkovic et al. 1998.c) and (Lazarevic et al. 2000). 
Remark 2.1.2.1 In the case when in the Theorem 2.1.2.5 1 0A = , e.g. 1A  is null matrix, we 
have the result similar to that presented in (Angelo 1974). 
Before presenting our crucial result, we need some discussion and explanations, as well 
some additional results. 
For the sake of completeness, we present the following result (Lee & Dianat 1981).  
Lemma 2.1.2.1 Let us consider the system (1) and let ( )1P t  be characteristic matrix of 

dimension ( )n n× , continuous and differentiable over time interval 0, τ⎡ ⎤⎣ ⎦  and 0 elsewhere, 
and a set: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 1
0 0

, d d
h h

tV t P t P t P tτ τ τ τ τ τ τ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + − + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫x x x x x , (13) 

where *
0 0 0P P= >  is Hermitian matrix and  ( ) ( ) , , 0t tϑ ϑ ϑ τ= + ∈ −⎡ ⎤⎣ ⎦x x .  

If:  ( )( ) ( )( )*
0 0 1 0 1 00 0P A P A P P Q+ + + = − , (14) 

 ( ) ( )( ) ( )1 0 1 10 , 0P A P Pκ κ κ τ= + ≤ ≤ , (15) 

where ( )1 1P Aτ =  and * 0Q Q= >  is Hermitian matrix, then (Lee &Dianat 1981):  

 ( ) ( ), , 0t t
dV V
dt

τ τ= <x x . (16) 
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Equation (13) defines Lyapunov’s function for the system (1) and * denotes conjugate 
transpose of matrix.  
In the paper (Lee, Dianat 1981) it is emphasized that the key to the success in the construction 
of a Lyapunov function corresponding to the system (1) is the existence of at least one 
solution ( )1P t  of (15) with boundary condition ( )1 1P Aτ = .  

In other words, it is required that the nonlinear algebraic matrix equation: 

 ( )( ) ( )0 1 0
1 10

A P
e P A

τ+
= , (17) 

has at least one solution for ( )1 0P .  

Theorem 2.1.2.6 Let the system be described by (1). If for any given positive definite 
Hermitian matrix Q  there exists a positive definite Hermitian matrix 0P , such that: 

 ( )( ) ( )( )0 0 1 0 10 0 0P A P A P P Q
∗

+ + + + = ,  (18) 

where for 0,ϑ τ∈ ⎡ ⎤⎣ ⎦  and ( )1P ϑ satisfies: 

 ( ) ( )( ) ( )1 0 1 10P A P Pϑ ϑ= + , (19) 

with boundary condition ( )1 1P Aτ =  and ( )1 0P τ =  elsewhere, then the system is 

asymptotically stable, (Lee, Dianat 1981). 
Theorem 2.1.2.7 Let the system be described by (1) and furthermore, let (17) have solution 
for ( )1 0P , which is nonsingular.  Then, system (1) is asymptotically stable if (19) of Theorem 

2.1.2.6 is satisfied, (Lee, Dianat 1981).  
Necessary and sufficient conditions for the stability of the system are derived by 
Lyapunov’s direct method through construction of the corresponding “energy” function. 
This function is known to exist if a solution P1(0) of the algebraic nonlinear matrix equation 

( )( ) ( )1 0 1 1exp 0 0A A P Pτ= + ⋅  can be determined. 

It is asserted, (Lee, Dianat 1981), that derivative sign of a Lyapunov function (Lemma 2.1.2.1) 
and thereby asymptotic stability of the system (Theorem 2.1.2.6 and Theorem 2.1.2.7) can be 
determined based on the knowledge of only one or any,  solution of the particular nonlinear 
matrix equation.  
We now demonstrate that Lemma 2.1.2.1 should be improved since it does not take into 
account all possible solutions for (17). The counterexample, based on original approach and 
supported by the Lambert function application, is given in (Stojanovic & Debeljkovic 2006), 
(Debeljkovic & Stojanovic 2008).  
The final results, that we need in the sequel, should be: 
Lemma 2.1.2.2 Suppose that there exist(s) the solution(s) ( )1 0P of (19) and let the 

Lyapunov’s function be (13). Then, ( ), 0tV τ <x  if and only if for any matrix * 0Q Q= >  

there exists matrix *
0 0 0P P= >  such that (5) holds for all solution(s) ( )1 0P , (Stojanovic & 

Debeljkovic 2006) and (Debeljkovic & Stojanovic 2008). 
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Remark 2.1.2.1 The necessary condition of Lemma 2.1.2.2. follows directly from the proof of 
Theorem 2 in (Lee & Dianat 1981) and (Stojanovic & Debeljkovic 2006).  
Theorem 2.1.2.8 Suppose that there exist(s) the solution(s) of ( )1 0P of (17). Then, the system 

(1) is asymptotically stable if for any matrix * 0Q Q= >  there exists matrix *
0 0 0P P= >  such 

that (14) holds for all solutions ( )1 0P of (17), (Stojanovic & Debeljkovic 2006) and (Debeljkovic 

& Stojanovic 2008).  
Remark 2.1.2.2  Statements Lemma 2.1.2.2. and Theorems 2.1.2.7 and Theorems 2.1.2.8 require 
that corresponding conditions are fulfilled for any solution ( )1 0P of (17) . 

These matrix conditions are analogous to the following known scalar condition of 
asymptotic stability. 
System (1) is asymptotically stable iff the condition Re( ) 0s <  holds for all solutions s of : 

 ( ) ( )0 1det 0sf s sI A e Aτ−= − − = .  (20) 

Now, we  can present our main result, concerning practical stability of system (1). 
Theorem 2.1.2.9 System (1) with initial function (2), is attractive practically stable with respect 

to ( ){ }2
0 , , , ,t α βℑ ⋅ , α β< ,  if there exist a positive  real number q , 1q > , such that:  

 ( ) ( ) ( )
0 0 0

0
,0

sup , 1,
P P P

t t q t q t t
ϑ τ

τ ϑ
∈ −⎡ ⎤⎣ ⎦

+ ≤ + < > ≥x x x , t∀ ∈ ℑ  , ( ) ,t β∀ ∈x S  (21) 

and if for any matrix * 0Q Q= >  there exists matrix *
0 0 0P P= >  such that (14) holds for all 

solutions ( )1 0P of (17) and if the following conditions are satisfied (Debeljkovic et al. 2011.b): 

 ( )( )max 0 ,t te tλ β
α

ϒ −
< ∀ ∈ ℑ , (22)  

where: 

 ( ) ( )( ) ( ) ( ) ( )
1 2

max max 0 1 0 1 0 0 0: 1T T Tt P A P A P q P t t P tλ λ
−⎛ ⎞ϒ = + =⎜ ⎟

⎝ ⎠
x x x x , (23) 

Proof. Define tentative aggregation function, as: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 11
0 0

0 1 1
0 0

, TT T
t

T T

V t P t t P P P t d d

t P P t d t P d

τ τ

τ τ

τ ν ν η η ν η

η η η η η η

= + − −

+ − + −

∫ ∫

∫ ∫

x x x x x

x x x

 (24) 

The total derivative ( )( ),V t tx along the trajectories of the system, yields1 

                                                 
1 Under conditions of Lemma 2.1.2.1. 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
0 0

,
T

tV t P t d Q t P t d
τ τ

τ η η η η η η
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + − × − × + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫x x x x x , (25) 

and since, ( )Q−  is negative definite and obviously ( ), 0tV τ <x , time delay system (1) 
possesses atractivity property. 
Furthermore, it is obvious that 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0
0 11

0 0

0 1 1
0 0

,
(

)

T
t TT

T T

d t P tdV d t P P P t d d
dt dt dt

t P P t d t P d

τ τ

τ τ

τ
ν ν η η ν η

η η η η η η

= + − −

+ − + −

∫ ∫

∫ ∫

x xx
x x

x x x

 (26) 

so, the standard procedure, leads to: 

 ( ) ( )( ) ( )( ) ( ) ( ) ( )0 0 0 0 0 0 12T T T Td t P t t A P P A t t P A t
dt

τ= + + −x x x x x x ,    or (27) 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 12T T T T Td t P t t A P P A Q t t P A t t Q t
dt

τ= + + + − −x x x x x x x x  (28) 

From the fact that the time delay system under consideration, upon the statement of the 
Theorem, is asymptotically stable 2, follows: 

 ( ) ( )( ) ( ) ( ) ( ) ( )0 0 12T T Td t P t t Q t t P A t
dt

τ= − + −x x x x x x ,  (29)  

and using very well known inequality 3, with particular choice:  

 ( ) ( ) ( ) ( )0 0,T T T Tt t t P t tΓ = > ∀ ∈ ℑx x x x , (30) 

and the fact that: 

 ( ) ( ) 0,T t Q t t> ∀ ∈ ℑx x , (31) 

is positive definite quadratic form, one can get:  

 
( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )
0 0 1

1
0 1 0 1 0 0

2T T

T T T

d t P t t P A t
dt

t P A P A P t t P t

τ

τ τ−

= −

≤ + − −

x x x x

x x x x
  (32) 

and using (21), (Su & Huang 1992), (Xu &Liu 1994) and (Mao 1997), clearly (32) reduces to: 

                                                 
2 Clarify Theorem 2.1.2.8. 
3 ( ) ( ) ( ) ( ) ( ) ( )12 , 0T T T Tt t t t t tτ τ τ−− ≤ Γ + − Γ − Γ = Γ >u v u u v v . 
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 ( ) ( )( ) ( )( ) ( )1 2
0 0 1 0 1 0

T T Td t P t t P A P A P q P t
dt

−< +x x x x ,  (33) 

or, using (22), one can get: 

 ( ) ( )( ) ( ) ( ) ( )0 max 0
T Td t P t t P t

dt
λ< ϒx x x x ,  (34) 

or: 

 
( ) ( )( )

( ) ( ) ( )
0 0

0
max

0

Tt t

T
t t

d t P t
dt

t P t
λ< ϒ∫ ∫

x x

x x
,  (35) 

and: 

 ( ) ( ) ( ) ( ) ( )( )max 0
0 0 0 0

t tT Tt P t t P t eλ ϒ −
<x x x x . (36) 

Finally, if one applies the first condition, given in Definition  2.1.2.7 , and  then: 

 ( ) ( ) ( )( )max 0
0

t tT t P t eλα ϒ −
< ⋅x x ,  (37) 

and by applying the basic condition (22) of the Theorem 2.1.2.9, one can get 

 ( ) ( )0 ,T t P t tβα β
α

< ⋅ < ∀ ∈ ℑx x .     Q.E.D. (38) 

STABILITY THEOREMS - Independent delay stability conditions 

Theorem 2.1.2.10 Time delayed system (1),  is  finite time stable w.r.t. ( ){ }2
0 , , , ,t α βℑ ⋅ , 

α β< , if there exist a positive  real number q , 1q > , such that:  

 ( ) ( ) ( ) ( )0
,0

sup , 1, , ,t t q t q t t t t β
ϑ τ

τ ϑ
∈ −⎡ ⎤⎣ ⎦

+ ≤ + < > ≥ ∀ ∈ ℑ ∀ ∈x x x x S , (39) 

if the following condition is satisfied (Debeljkovic et al. 2010): 

 ( )( )max 0 ,
t t

e t
λ β

α
Ψ −

< ∀ ∈ ℑ ,  (40) 

where: 

 ( ) ( )2
max max 0 0 1 1

T TA A A A q Iλ λΠ = + + + . (41) 

Proof. Define tentative aggregation function as: 

 ( )( ) ( ) ( ) ( ) ( )
t

T T

t

V t t t d
τ

ϑ ϑ ϑ
−

= + ∫x x x x x . (42) 
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The total derivative ( )( ),V t tx along the trajectories of the system, yields: 

 
( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1

,

2 .

t
T T

t
T T T T T

d dV t t t t d
dt dt

t A A t t A t t t t t
τ

ϑ ϑ ϑ

τ τ τ
−

= +

= + + − + + − −

∫x x x x x

x x x x x x x x

 (43) 

From (43), it is obvious: 

 ( ) ( )( ) ( )( ) ( ) ( ) ( )0 0 12T T T Td t t t A A t t A t
dt

τ= + + −x x x x x x , (44) 

and based on the previous inequality and with the particular choice: 

 ( ) ( ) ( ) ( ) 0,T Tt t t t tΓ = > ∀ ∈ ℑx x x x ,    so that (45) 

 ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )0 0 1 1
T T T T T Td t t t A A t t A A t t I t

dt
τ τ≤ + + + − −x x x x x x x x , (46) 

Based on (39), (Su & Huang 1992), (Xu & Liu 1994) and (Mao 1997), it is clear that (46) reduces 
to: 

 ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )2
0 0 1 1 max

T T T T Td t t t A A A A q I t t t
dt

λ< + + + < Πx x x x x x , (47) 

where matrix Π is defined by (41). From (47) one can get: 

 
( ) ( )( )

( ) ( )
( )

0 0

max

Tt t

T
t t

d t t
dt

t t
λ< Π∫ ∫

x x

x x
,      and: (48) 

 ( ) ( ) ( ) ( ) ( )( ) ( )( )max 0max 0
0 0 ,t tt tT Tt t t t e e tλλ βα α β

α
Π −Π −< < ⋅ < ⋅ < ∀ ∈ ℑx x x x . (49) 

under the identical technique from the previous proof of  Theorem 2.1.2.9.   Q.E.D. 

2.2 Discrete time delay systems 
2.2.1 Discrete time delay systems – stability in the sense of Lyapunov 
ASYMPTOTIC STABILITY-APPROACH BASED ON THE RESULTS OF TISSIR AND 
HMAMED4 
In particular case we are concerned with a linear, autonomous, multivariable discrete time 
delay system in the form: 

 ( ) ( ) ( )0 11 1k A k A k+ = + −x x x , (50) 

                                                 
4 (Tissir & Hmamed 1996). 
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The equation (50) is referred to as homogenous or the unforced state equation, ( )kx is the 
state vector, 0A  and 1A are constant system matrices of appropriate dimensions.  
Theorem 2.2.1.1.  System (50) is asymptotically stable if: 

 0 1 1A A+ < , (51)  

holds, (Mori et al. 1981). 
Theorem 2.2.1.2. System (50) is asymptotically stable, independent of delay, if:  

 
( )1

2

1
2

min

1
max 0

T

Q

A
Q A P

σ

σ

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠< , (52) 

where P  is the solution of the discrete Lyapunov matrix equation: 

 ( )0 1 10 2T TA PA P Q A PA− = − + , (53) 

where max( )σ ⋅ and min( )σ ⋅  are the maximum and minimum singular values of the matrix ( )⋅ , 
(Debeljkovic et al. 2004.a, 2004.b, 2004.d, 2005.a). 
Theorem 2.2.1.3  Suppose  the matrix ( )1 1

TQ A PA−  is regular. 
System (50) is asymptotically stable, independent of delay, if:  

 
( )

( )1
2

1
2

min 1 1

1
max 0

T

T

Q A PA

A
Q A P

σ

σ

−

−

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠< , (54) 

where P  is the solution of the discrete Lyapunov matrix equation: 

 0 0 2TA PA P Q− = − , (55) 

where max( )σ ⋅ and min( )σ ⋅  are the maximum and minimum singular values of the matrix (⋅), 
(Debeljkovic et al. 2004.c, 2004.d, 2005.a, 2005.b). 
ASYMPTOTIC STABILTY- LYAPUNOV BASED APPROACH  
A linear, autonomous, multivariable linear discrete time-delay system can be represented by 
the difference equation: 

 ( ) ( ) ( ) ( ) { }
0

1 , , , 1, ... , 0
N

j j N N
j

k A k h h hϑ ϑ ϑ
=

+ = − = ∈ − − + Δ∑x x x ψ , (56) 

where ( ) nk ∈x , n n
jA ×∈ , 0 1 20 ... Nh h h h= < < < <  - are integers and represent the 

systems time delays. Let ( )( ) : nV k →x , so that ( )( )V kx is bounded for, and for which 

( )kx  is also bounded. 
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Lemma 2.2.1.1 For any two matrices of the same dimenssions F  and G  and for some 
pozitive constant ε the following statement is true (Wang & Mau 1997): 

 ( ) ( ) ( ) ( )11 1T T TF G F G F F G Gε ε −+ + ≤ + + + . (57) 

Theorem 2.2.1.4 Suppose that 0A  is not null matrix. If for any given matrix 0TQ Q= >  

there exists matrix 0TP P= >  such that the following matrix equation is fulfilled:  

 ( ) ( )1
min 0 0 min 1 11 1T TA PA A PA P Qε ε −+ + + − = − ,  (58) 

where:  
1 2

min
0 2

A

A
ε = ,  (59) 

then, system (56) is asymptotically stable, (Stojanovic & Debeljkovic 2005.b). 
Corollary 2.2.1.1 If for any given matrix 0TQ Q= >  there exists matrix 0TP P= >  being the 
solution of the following Lyapunov matrix equation: 

 min
0 0

min1
TA PA P Qε

ε
− = −

+
,  (60) 

where minε is defined by (59) and if the following condition is satisfied: 

 ( ) ( ) ( )
( ) ( )

min
max 0 max 1

max 0 max

Q P
A A

A P
λ

σ σ
σ λ

−
+ < ,  (61) 

then, system (59)  is asymptotically stable, (Stojanovic & Debeljkovic  2005.b). 
Corollary 2.2.1.2 If for any given matrix 0TQ Q= >   there exists matrix  0TP P= >  being 
solution of the following matrix equation: 

 ( )min 0 0 min1 TA PA P Qε ε+ − = − ,  (62) 

where minε is defined by (59), and if the following condition is satisfied, too:  

 ( ) ( ) ( )
( ) ( )

min
max 0 max 1

max 0 max

Q
A A

A P

λ
σ σ

σ λ
+ < , (63) 

then, system (56) is asymptotically stable, (Stojanovic & Debeljkovic  2005.b). 
Theorem 2.2.1.5 If for any given matrix 0TQ Q= >  there exists matrix 0TP P= >  such that 
the following matrix equation is fulfilled: 

 0 0 1 12 2T TA PA A PA P Q+ − = − ,  (64) 

then, system (56) is asymptotically stable, (Stojanovic & Debeljkovic 2006.a). 
Corollary 2.2.1.3 System (56)  is asymptotically stable, independent of delay, if : 
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 ( ) ( )
( )1

2

min2
max 1 2

max

2

2

Q P
A

P

λ
σ

σ

−
< , (65) 

where, for any given matrix 0TQ Q= >  there exists matrix 0TP P= >  being the solution of 
the following Lyapunov matrix equation (Stojanovic & Debeljkovic 2006.a): 

 0 0
TA PA P Q− = − .  (66) 

Corollary 2.2.1.4  System (56)  is asymptotically stable, independent of delay, if:  

 ( ) ( )
( )1

2

min2
max 1 2

max2

Q
A

P

λ
σ

σ
< , (67) 

where, for any given matrix 0TQ Q= >  there exists matrix 0TP P= >  being the solution of 
the following Lyapunov matrix equation (Stojanovic & Debeljkovic 2006.a): 

 0 02 TA PA P Q− = − .  (68) 

2.2.2 Discrete time delay systems – Stability over finite time interval 
As far as we know the only result, considering and investigating the problem of non-
Lyapunov analysis of linear discrete time delay systems, is one that has been mentioned in 
the introduction, e.g. (Debeljkovic & Aleksendric 2003), where this problem has been 
considered for the first time. 
Investigating the system stability throughout the discrete fundamental matrix is very 
cumbersome, so there is a need to find some more efficient expressions that should be based 
on calculation appropriate eigenvalues or norm of appropriate systems matrices as it has 
been done in continuous case. 

SYSTEM DESCRIPTION 
Consider a linear discrete system with state delay, described by: 

 ( ) ( ) ( )0 11 1k A k A k+ = + −x x x , (69) 

with known vector valued function of initial conditions: 

 ( ) ( )0 0 0, 1 0k k k= − ≤ ≤x ψ , (70) 

where ( ) nk ∈x  is a state vector and with constant matrices 0A  and 1A  of appropriate 

dimensions. Time delay is constant and equals one. For some other purposes, the state delay 
equation can be represented in the following way: 

 ( ) ( ) ( )0
1

1
M

j j
j

k A k A k h
=

+ = + −∑x x x , (71)  
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 ( ) ( ) { }, , 1, ... , 0h hϑ ϑ ϑ= ∈ − − +x ψ , (72)  

where ( ) nk ∈x , n n
jA ×∈ , 1,2j = , h – is integer representing system time delay and 

( )⋅ψ is a priori known vector function of initial conditions, as well. 
STABILITY DEFINITIONS 
Definition 2.2.2.1 System, given by (69), is attractive practically stable with respect to 

{ }0 , , ,Nk α βK S S , iff  ( )
0 00 0

2 2
0 0 TT A PAA PA

k α= <x x , implies:  

( )
0 0

2
,T NA PA

k kβ< ∀ ∈x K   

with property that ( )
0 0

2
lim 0TA PAk

k
→∞

→x , (Nestorovic et al. 2011). 

Definition 2.2.2.2 System, given by (69), is practically stable with respect to { }0 , , ,Nk α βK S S , 

if and only if: 2
0 α<x , implies ( ) 2

, Nk kβ< ∀ ∈x K . 

Definition 2.2.2.3 System given by (69), is attractive practically unstable with respect 

( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if for 

0 0

2
0 TA PA α<x , there exist a moment: *

Nk k= ∈K , so that 

the next condition is fulfilled ( )
0 0

2
*

TA PA
k β≥x  with property that ( )

0 0

2
lim 0TA PAk

k
→∞

→x , 

(Nestorovic et al. 2011). 
Definition 2.2.2.4 System given by (69), is practically unstable with respect 

( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if for 2

0 α<x  there exist a moment: *
Nk k= ∈K , such that the 

next condition is fulfilled ( ) 2
*k β≥x  for some *

Nk k= ∈K . 

Definition 2.2.2.5 Linear discrete time delay system (69) is finite time stable with respect to 
( ){ }0, , , ,Nk kα β ⋅ , α β≤ , if and only if for every trajectory ( )kx  satisfying initial function, 

(70) such that ( ) , 0, 1, 2, ,k k Nα< = − − ⋅ ⋅⋅ −x  imply ( ) 2
, Nk kβ< ∈x K , (Aleksendric 

2002), (Aleksendric & Debeljkovic 2002), (Debeljkovic & Aleksendric 2003). 
This Definition is analogous to that presented, for the first time, in (Debeljković et al. 1997.a, 
1997.b, 1997.c, 1997.d) and (Nenadic et al. 1997). 
SOME PREVIOUS RESULTS 
Theorem 2.2.2.1 Linear discrete time delay system (69), is finite time stable with respect to 

( ){ }2
, , , ,M Nα β ⋅ , α β< , ,α β +∈ , if the following sufficient condition is fulfilled: 

 ( )

1

1 , 0,1, ,
1

M

j
j

k k N
A

β
α

=

Φ < ⋅ ∀ = ⋅ ⋅⋅
+ ∑

, (73)  
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( )kΦ being fundamental matrix, (Aleksendric 2002), (Aleksendric & Debeljkovic 2002), 
(Debeljkovic & Aleksendric 2003). 
This result is analogous to that, for the first time derived, in (Debeljkovic et al. 1997.a) for 
continuous time delay systems. 
Remark 2.2.2.1 The matrix measure is widely used when continuous time delay system are 
investigated, (Coppel 1965), (Desoer & Vidysagar 1975). The nature of discrete time delay 
enables one to use this approach as well as Bellman’s principle, so the problem must be 
attack from the point of view which is based only on norms. 
STABILITY THEOREMS:  PRACTICAL AND FINITE TIME STABILITY 
Theorem 2.2.2.2 System given by (71), with 1det 0A ≠ , is attractive practically stable with 

respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< ,  if there exist 0TP P= > , being the solution of: 

 0 02 TA PA P Q− = − , (74) 

where 0TQ Q= > and if the following conditions are satisfied (Nestorovic et al. 2011): 

 ( )
1 1

12 2
1 min 1 1 max 0

T TA Q A PA Q A Pσ σ
− −−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟< −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (75) 

 ( )
1
2
max ,

k
Nkβλ

α
< ∀ ∈K , (76) 

where: 

 ( ) ( ) ( ){ ( ) ( ) }max 1 1 0 0max : 1T T T Tk A PA k k A PA kλ = =x x x x . (77)  

Proof. Let us use a functional, as a possible aggregation function, for the system to be 
considered: 

 ( )( ) ( ) ( ) ( ) ( )1 1T TV k k P k k Q k= + − −x x x x x , (78)  

with matrices 0TP P= >  and 0TQ Q= > . 
Clearly, using the equation of motion of (69), we have: 

 ( )( ) ( )( ) ( )( )1V k V k V kΔ = + −x x x , (79)  

or: 

 

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

( )( ) ( )
0 0 0 1

1 1

1 1

1 1

2 1

1 1

T T

T T

T T T T

T T

V k k P k k P k

k Q k k Q k

k A PA Q P k k A PA k

k Q A PA k

Δ = + + −

+ − − −

= + − + −

− − − −

x x x x x

x x x x

x x x x

x x

 (80)  
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It has been shown, (Debeljković et al. 2004, 2008), that if: 

 0 02 TA PA P Q− = − , (81)  

where 0TP P= >  and 0TQ Q= > , then for: 

 ( )( ) ( ) ( ) ( ) ( )1 1T TV k k P k k Q k= + − −x x x x x , (82)  

the backward difference along the trajectories of the systems is: 

 

( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

0 0 1 1

0 1 1 0

1

1 1

1 1

T T T T

T T T T

V k V k V k

k A PA P Q k k A PA Q k

k A PA k k A PA k

Δ = + −

= − + + − − −

+ − + −

x x x

x x x x

x x x x

 (83)  

or: 

 

( )( ) ( )( ) ( )

( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 0

1 1 0 1

1 0 0 0 1 1

2

1 2 1 1

( 1) 1 1

T T

T T T T

T T T T T T

V k k A PA P Q k

k A PA Q k k A PA k

k A PA k k A PA k k A PA k

Δ = − +

+ − − − + −

+ − − − − −

x x x

x x x x

x x x x x x

 (84)  

and since we have to take into account (80), one can get: 

 
( )( ) ( )( ) ( )

( ) ( )

1 1

0 1 0 1

1 2 1

1 ( ) ( 1) .

T T

T

V k k A PA Q k

A k A k P A k A k

Δ = − − −

⎡ ⎤ ⎡ ⎤− − − − −⎣ ⎦ ⎣ ⎦

x x x

x x x x
 (85)  

Since the matrix 0TP P= > , it is more than obvious, that: 

 ( )( ) ( )( ) ( )1 11 2 1T TV k k A PA Q kΔ < − − −x x x . (86)  

Combining the right sides of (80) and (86), yields: 

 
( )( ) ( )( ) ( ) ( ) ( )

( )( ) ( )
0 0 0 1

1 1

2 1

1 1

T T T T

T T

V k k A PA Q P k k A PA k

k A PA k

Δ = + − + −

< − −

x x x x x

x x
 (87)  

Using the very well known inequality, with particular choice: 

 ( )1 1
1
2

TA PAΓ = , (88)  

it can be obtained: 

                     
( ) ( )

( )( ) ( ) ( )( ) ( )

1

0 0 0 1 1 1 1 0

1 1 1 1

1
2

1 1 1 1 1
2

T T T T T

T T T T

k A PA Q P A PA A PA A PA k

k A PA k k A PA k

−⎛ ⎞⎛ ⎞⎜ ⎟+ − + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

+ − − < − −

x x

x x x x

                (89)  
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 ( )( ) ( ) ( )( ) ( )0 0 0 0 1 1
12 1 1
2

T T T T Tk A PA Q P A PA k k A PA k+ − + < − −x x x x . (90)  

Since: 0 02 0TA PA Q P+ − = , (91)  

it is finally obtained: 

 ( ) ( ) ( )( ) ( )0 0 1 1
1 1 1
2

T T T Tk A PA k k A PA k< − −x x x x , (92)  

or:  ( ) ( ) ( ) ( ) ( )0 0 max 0 0
1 1 1
2

T T T Tk A PA k k A PA kλ< − −x x x x , (93)  

where: 

 ( ) ( ) ( ) ( ) ( ) ( ){ }max 1 1 0 0 0 0max : 2 , 1T T T T Tk A PA k A PA P Q k A PA kλ = − = − =x x x x . (94)  

Since this manipulation is independent of k , it can be written: 

 ( ) ( ) ( ) ( ) ( )0 0 max 0 0
11 1
2

T T T Tk A PA k k A PA kλ+ + <x x x x , (95)  

or: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 max 0 0

max 0 0

1ln 1 1 ln
2
1ln ln
2

T T T T

T T

k A PA k k A PA k

k A PA k

λ

λ

+ + <

< +

x x x x

x x
 (96)  

and:  

( ) ( ) ( ) ( ) ( )
1
2

0 0 0 0 maxln 1 1 ln lnT T T Tk A PA k k A PA k λ+ + − <x x x x . (97)  

It can be shown that: 

 

( ) ( )( ( ) ( ))
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )( ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( )

0

0

1

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

ln 1 1 ln

ln 1 1 ln 2 2

ln ln

ln ln 1 1 ln

ln ln

k k
T T

j k

T T

T T

T T T

T T

j j j j

k k k k

k k k k k k k k

k k k k k k k k

k k k k k k

+ −

=

+ + − =

= + + + + + + +

+ + − 2 +1 + − 2 +1 + + −1+1 + −1+1

− + + + + + + −1 + −1

= + + −

∑ x x x x

x x x x

x x x x

x x x x x x

x x x x

…

…

 (98)  

If the summing 
0

0

1k k

j k

+ −

=
∑ is applied to both sides of (97) for Nk∀ ∈K , one can obtain: 
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( ) ( ) ( ) ( )

( ) ( )

0

0

00

0 0

1

0 0 0 0

1 111
2 2
max max

ln 1 1 ln

ln ln

k k
T T T T

j k

k kk k

j k j k

k A PA k k A PA k

λ λ

+ −

=

+ −+ −

= =

+ + −

≤ ≤

∑

∑ ∏

x x x x

 (99)  

so that, for (99), it seems to be: 

 
( ) ( ) ( ) ( )

( ) ( )
0

0

0 0 0 0 0 0 0 0

1 11
2 2

max max

ln ln

ln ln ,

T T T T

k k k
N

j k

k k A PA k k k A PA k

kλ λ
+ −

=

+ + −

< < ∀ ∈∏

x x x x

K
 (100)  

as well as: 

 
( ) ( ) ( )

( ) ( ) ( )

0

0

11
2

0 0 0 0 max

1
2

max 0 0 0 0

ln ln

ln ln

k k
T T

j k

k T T
N

k k A PA k k

k A PA k k

λ

λ

+ −

=

+ + ≤

≤ + ∀ ∈

∏x x

x x K

 (101)  

Taking into account fact that 
0 0

2
0 TA PA α<x  and basic condition of Theorem 2.2.2.2, (76), one 

can get: 

   
( ) ( ) ( ) ( ) ( )

( )

1
2

0 0 0 0 max 0 0 0 0

1
2

max

ln ln ln

ln ln ln , .

kT T T T

k
N

k k A PA k k k A PA k

k Q.E.D.

λ

βα λ α β
α

+ + < +

< ⋅ < ⋅ < ∀ ∈

x x x x

K
 (102) 

Remark 2.2.2.2 Assumption 1det 0A ≠  do not reduce the generality of this result, since this 

condition is not crucial when discrete time systems are considered. 
Remark 2.2.2.3 Lyapunov asymptotic stability and finite time stability are independent 
concepts: a system that is finite time stable may not be Lyapunov asymptotically stable, 
conversely Lyapunov asymptotically stable system could not be finite time stable if, during 
the transients, its motion exceeds the pre-specified bounds ( )β . Attraction property is 
guaranteed by (74) and (75), (Debeljković et al. 2004) and system motion within pre-specified 
boundaries is well provided by (76). 
Remark 2.2.2.4 For the numerical treatment of this problem ( )maxλ can be calculated in the 

following way (Kalman, Bertram 1960): 

 ( ) { } ( ) 1
max max 1 1 0 0max T TA PA A PAλ λ

−⎛ ⎞= = ⎜ ⎟
⎝ ⎠x

. (103)  

Remark 2.2.2.5 These results are in some sense analogous to those given in (Amato et al. 
2003), although results presented there are derived for continuous time varying systems. 
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Now we proceed to develop delay independent criteria, for finite time stability of system 
under consideration, not to be necessarily asymptotic stable, e.g. so we reduce previous 
demand that basic system matrix 0A  should be discrete stable matrix. 

Theorem 2.2.2.3 Suppose the matrix ( )1 1 0TI A A− > . System given by (69), is finite time stable 

with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if there exist a positive real number p , 1p > , 

such that:  

 ( ) ( ) ( )2 221 , ,Nk p k k k β− < ∀ ∈ ∀ ∈x x xK S ,  (104) 

and if the following condition is satisfied (Nestorovic et al. 2011): 

 ( )max ,k
Nkβλ

α
< ∀ ∈K , (105)  

where: ( ) ( )( )2
max max 0 1 1 0

T TA I A A A p Iλ λ= − + . (106)  

Proof. Now we consider, again, system given by (69).  Define: 

 ( )( ) ( ) ( ) ( ) ( )1 1T TV k k k k k= + − −x x x x x , (107)  

as a tentative Lyapunov-like function for the system, given by (69).  
Then, the ( )( )V kΔ x  along the trajectory, is obtained as: 

 

( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0 0 1

1 1

1 1 1 1 1

2 1

1 1 1 1

T T

T T T T

T T T

V k V k V k k k k k

k A A k k A A k

k A A k k k

Δ = + − = + + − − −

= + −

+ − − − − −

x x x x x x x

x x x x

x x x x

 (108)  

From (108), one can get: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0

0 1 1 1

1 1

2 1 1 1

T T T

T T T T

k k k A A k

k A A k k A A k

+ + =

+ − + − −

x x x x

x x x x
 (109)  

Using the very well known inequality, with choice: 

 ( )1 1 0TI A AΓ = − > , (110)  

I  being the identity matrix, it can be obtained: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0 0

1
1 1 1 1

1 1

1 1

T T T

T T T T

k k k A A k

k A I A A A k k k
−

+ + ≤ +

− + − −

x x x x

x x x x
 (111)  

and using assumption (104), it is clear that (111) reduces to: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2
0 1 1 0

max 0 1

1 1

, ,

T T T T

T

k k k A I A A p I A k

A A p k kλ

−⎛ ⎞+ + < − +⎜ ⎟
⎝ ⎠

<

x x x x

x x
 (112)  

where: ( ) ( ) 1 2
max 0 1 max 0 1 1 0, , T TA A p A I A A A p Iλ λ

−⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 (113)  

with obvious property, that gives the natural sense to this problem: ( )max 0 1, , 0A A pλ ≥  

when ( )1 1 0TI A A− ≥ . 

Following the procedure from the previous section, it can be written: 

 ( ) ( ) ( ) ( ) ( )maxln 1 1 ln lnT Tk k k k λ+ + − <x x x x . (114)  

By applying the sum 
0

0

1k k

j k

+ −

=
∑ on both sides of (112)  for Nk∀ ∈K , one can obtain: 

 ( ) ( ) ( ) ( ) ( ) ( )
0

0

1

0 0 max max 0 0ln ln ln ln ,
k k

T k T
N

j k
k k k k k k kλ λ

+ −

=

+ + ≤ ≤ + ∀ ∈∏x x x x K  (115)  

Taking into account the fact that 2
0 α<x  and condition of Theorem 2.2.2.3, (105), one can 

get: 

 
( ) ( ) ( ) ( ) ( )

( )
0 0 max 0 1 0 0

max 0 1

ln ln , , ln

ln , , ln ln ,

T k T

k
N

k k k k A A p k k

A A p k

λ

βα λ α β
α

+ + < +

< ⋅ < ⋅ < ∀ ∈

x x x x

K
 (116)  

Remark 2.2.2.6 In the case when 1A  is null matrix and 0p =  result, given by (106), reduces 
to that given in (Debeljkovic 2001) earlier developed for ordinary discrete time systems. 
Theorem 2.2.2.4 Suppose the matrix ( )1 1 0TI A A− > . System, given by (69), is practically 

unstable with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if there exist a positive real number p , 

1p > , such that:  

 ( ) ( ) ( )2 221 , ,Nk p k k k β− < ∀ ∈ ∀ ∈x x xK S , (117) 

and if there exist: real, positive number ,  0,δ δ α∈ ⎤ ⎡⎦ ⎣  and time instant 

( )* *
0,  : Nk k k k k= ∃! > ∈K  for which the next condition is fulfilled: 

 *
min ,k

Nkβλ
δ

∗
> ∈K . (118)  
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Proof. Let: 

 ( )( ) ( ) ( ) ( ) ( )1 1T TV k k k k k= + − −x x x x x   (119)  

Then following the identical procedure as in the previous Theorem, one can get: 

 ( ) ( ) ( ) ( ) ( )minln 1 1 ln lnT Tk k k k λ+ + − >x x x x , (120)  

where:  

 ( ) ( ) 1 2
min 0 1 min 0 1 1 0, , T TA A p A I A A A p Iλ λ

−⎛ ⎞= − +⎜ ⎟
⎝ ⎠

. (121)  

If we apply the summing 
0

0

1k k

j k

+ −

=
∑ on both sides of (120) for Nk∀ ∈K , one can obtain: 

 ( ) ( ) ( ) ( ) ( ) ( )
0

0

1

0 0 min min 0 0ln ln ln ln ,
k k

T k T
N

j k
k k k k k k kλ λ

+ −

=

+ + ≥ ≥ + ∀ ∈∏x x x x K . (122)  

It is clear that for any 0x  follows: 2
0δ α< <x  and for some Nk∗ ∈K  and with (118), one 

can get: 

 
( ) ( ) ( ) ( ) ( )

( )
0 0 min 0 1 0 0

min 0 1

ln ln , , ln

ln , , ln ln , ! .

T k T

k
N

k k k k A A p k k

A A p k Q.E.D.

λ

βδ λ δ β
δ

∗

∗

∗ ∗

∗

+ + > +

> ⋅ > ⋅ > ∃ ∈

x x x x

K
  (123)  

3. Singular and descriptive time delay systems 
Singular and descriptive systems represent very important classes of systems. Their stability 
was considered in detail in the previous chapter.  Time delay phenomena, which often occur 
in real systems, may introduce instability, which must not be neglected. Therefore a special 
attention is paid to stability of singular and descriptive time delay systems, which are 
considered in detail in this section. 

3.1 Continuous singular time delayed systems 
3.1.1 Continuous singular time delayed systems – Stability in the sense of Lyapunov  
Consider a linear continuous singular system with state delay, described by: 

 ( ) ( ) ( )0 1E t A t A t τ= + −x x x , (124) 

with known compatible vector valued function of initial conditions: 

 ( ) ( ) , 0t t tτ= − ≤ ≤x ψ , (125) 

where 0A  and  1A   are constant  matrices of appropriate dimensions. 
Time delay is constant, e.g. τ +∈ . Moreover we shall assume that rank E r n= < . 



 Time-Delay Systems 

 

52 

Definition 3.1.1.1 The matrix pair  ( )0,E A is regular if ( )0det sE A−  is not identically zero, 
(Xu et al. 2002.a). 
Definition 3.1.1.2 The matrix pair  ( )0,E A is impulse free if ( )degree det ranksE A E− = , 
(Xu et al. 2002.a). 
The linear continuous singular time delay system (124) may have an impulsive solution, 
however, the regularity and the absence of impulses of the matrix pair ( )0,E A  ensure the 
existence and uniqueness of an impulse free solution to the system under consideration, 
which is defined in the following Lemma. 
Lemma 3.1.1.1 Suppose that the matrix pair ( )0,E A  is regular  and impulsive free and unique 

on 0, ∞⎡ ⎡⎣ ⎣ , (Xu et al. 2002). 
Necessity for system stability investigation makes need for  establishing a proper stability 
definition. So one can has: 
Definition 3.1.1.3 Linear continuous singular time delay system (124) is said to be regular 
and impulsive free if the matrix pair ( )0,E A  is regular and impulsive free, (Xu et al. 2002.a). 

STABILITY DEFINITIONS 

Definition 3.1.1.4 If 0t T∀ ∈  and 0ε∀ > , there always exists ( )0 ,tδ ε , such that 

( ) ( )00, ,t tδψ δ ∗∀ ∈ ∩S S , the solution ( )0, ,t tx ψ  to (124) satisfies that ( )( ),t t ε≤q x , 

( )0 ,t t t∗∀ ∈ , then the zero solution to (124) is said to be stable on ( )( ){ }, ,t t Tq x , where 

0,T t∗⎡ ⎤= +⎣ ⎦ , 0 t∗< ≤ +∞  and  ( ) ( ){ }0, , 0 , , , 0n
δ δ τ δ δ= ∈ − < >⎡ ⎤⎣ ⎦ψ ψS C . ( )0 ,t t∗

∗S  

is a set of all consistency initial functions and for ( )0 ,t t∗
∗∀ ∈ψ S , there exists a continuous 

solution to (122) in )0 ,t tτ ∗⎡ −⎣  through ( )0 ,t ψ  at least, (Li & Liu 1997, 1998). 

Definition 3.1.1.5 If δ  is only related to ε  and has nothing to do with 0t , then the zero 

solution is said to be uniformly stable on ( )( ){ }, ,t t Tq x , (Li & Liu 1997, 1998). 

Definition 3.1.1.6 Linear continuous  singular time delay system (124) is said to be stable if 
for any 0ε >  there exist  a scalar ( ) 0δ ε >  such that, for any compatible initial conditions 

( )tψ , satisfying condition: ( ) ( )
0

sup
t

t
τ

δ ε
− ≤ ≤

≤ψ , the solution ( )tx  of system (2) satisfies 

( ) , 0t tε≤ ∀ ≥x .  

Moreover if ( )lim 0
t

t
→∞

→x , system  is said to be asymptotically stable,  (Xu et al. 2002.a). 

STABILITY THEOREMS 

Theorem 3.1.1.1 Suppose that the matrix pair ( )0,E A  is regular with system matrix 0A  
being nonsingular., e.i. 0det 0A ≠ . System (124) is asymptotically stable, independent of 
delay, if there exist a symmetric positive definite matrix 0TP P= > , being the solution of 
Lyapunov matrix equation 
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 ( )0 0 2 ,T TA PE E PA S Q+ = − +  (126) 

with  matrices 0TQ Q= >  and TS S= , such that: 

 ( )( ) ( ) ( ) { }0, \ 0T
kt S Q t t ∗+ > ∀ ∈x x x W , (127) 

is positive definite quadratic form on { }\ 0k∗W , k∗W being the subspace of consistent initial 

conditions, and if the following condition is satisfied: 

 
1 1

12 2
1 min max

TA Q Q E Pσ σ
−−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟<
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (128) 

Here max( )σ ⋅  and min( )σ ⋅  are maximum and minimum singular values of matrix ( )⋅ , 
respectively, (Debeljkovic et al. 2003, 2004.c, 2006, 2007). 
Proof. Let us consider the functional:  

 ( )( ) ( ) ( ) ( ) ( )
t

T T T

t

V t t E PE t Q d
τ

ϑ ϑ κ
−

= + ∫x x x x x . (129) 

Note that (Owens, Debeljković 1985) indicates that: 

 ( )( ) ( ) ( )T TV t t E PE t=x x x ,  (130) 

is positive quadratic form on k∗W  , and it is obvious that all smooth solutions ( )tx  evolve in 

k∗W , so ( )( )V tx can be used as a Lyapunov function for the system under consideration, 

(Owens, Debeljkovic 1985). It will be shown that the same argument can be used to declare the 
same property of another quadratic form present in (129). 
Clearly, using the equation of motion of (124), we have: 

 
( )( ) ( )( ) ( )

( )( ) ( ) ( ) ( )
0 0

12

T T T

T T T

V t t A PE E PA Q t

t E PA t t Q tτ τ τ

= + +

+ − − − −

x x x

x x x x
 (131) 

and after some manipulations, to the following expression is obtained: 

 ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 0 12 2 2

2

T T T T T

T T T

V t A PE E PA Q S t E PA t

t Q t t S t t Q t

τ

τ τ

= + + + + −

− − − − −

x x x x x

x x x x x x
 (132) 

From (126) and the fact that the choice of  matrix S , can be done, such that: 

 ( ) ( ) ( ) { }0, \ 0T
kt S t t ∗≥ ∀ ∈x x x W ,  (133) 

one obtains the following result: 
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 ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )12 T T T TV t t E PA t t Q t t Q tτ τ τ≤ − − − − −x x x x x x x ,  (134) 

and based on well known inequality: 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
2 2

1 1

1
1 1

2 2T T T T

T T T T T

t E PA t t E PA Q Q t

t E PA Q A PE t t Q t

τ τ

τ τ

−

−

− = −

≤ + − −

x x x x

x x x x
 (135) 

and by substituting into (134), it yields: 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 2 2
1 1 ( )T T T T TV t t Q t t E PA Q A PE t t Q Q t t−≤ − + ≤ − Γx x x x x x x ,  (136) 

with matrix Γ  defined by: 

 
1 1 1 1
2 2 2 2

1 1
T TI Q E PA Q Q A PEQ

− − − −⎛ ⎞
⎜ ⎟Γ = −
⎜ ⎟
⎝ ⎠

 (137)  

( )( )V tx  is negative definite, if: 

 
1 1 1 1

12 2 2 2
max 1 11 0T TQ E PA Q Q A PEQλ

− − − −−
⎛ ⎞
⎜ ⎟− >
⎜ ⎟
⎝ ⎠

, (138)  

which is satisfied, if:  
1 1

2 2 2
max 11 0TQ E PA Qσ

− −⎛ ⎞
⎜ ⎟− >
⎜ ⎟
⎝ ⎠

. (139) 

Using the properties of the singular matrix values, (Amir - Moez 1956), the condition (139), 
holds if:  

 
1 1

2 22 2
max max 11 0TQ E P A Qσ σ

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− >
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (140) 

which is satisfied if: 

 
1 122 22 2

min 1 max1 0. .TQ A Q E P Q.E.Dσ σ
−−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− >

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (141)  

Remark 3.1.1.1 (126-127) are, in modified form, taken from (Owens & Debeljkovic 1985). 
Remark 3.1.1.2 If the system under consideration is just ordinary time delay, e.g. ,E I=  we 
have result identical to that presented in (Tissir & Hmamed 1996).  
Remark 3.1.1.3 Let us discuss first the case when the time delay is absent. 
Then the singular (weak) Lyapunov matrix (126) is natural generalization of classical 
Lyapunov theory. In particular:  
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a. If E is nonsingular matrix, then the system is asymptotically stable if and only if 
1

0A E A−=  Hurwitz matrix. (126) can be written in the form: 

 ( )T T TA E PE E PEA Q S+ = − + ,  (142) 

with matrix Q being symmetric and positive definite, in whole state space, since then 

( )k n
k E

∗

∗ = ℜ =W . In this circumstances TE PE  is a Lyapunov function for the system. 

b. The matrix 0A  by necessity is nonsingular and hence the system has the form: 

 ( ) ( ) ( )0 0, 0 .E t t= =x x x x   (143) 

Then for this system to be stable (143) must hold also, and has familiar Lyapunov 
structure: 

 0 0
TE P PE Q+ = − ,  (144) 

where Q is symmetric matrix but only required to be positive definite on  k∗W . 

Remark 3.1.1.4 There is no need for the system, under consideration, to posses properties 
given in Definition 3.1.1.2, since this is obviously guaranteed by demand that all smooth 
solutions ( )tx  evolve in k∗W . 
Remark 3.1.1.5 Idea and approach is based upon the papers of (Owens & Debeljkovic 1985) 
and (Tissir & Hmamed 1996). 
Theorem 3.1.1.2 Suppose that the system matrix 0A  is nonsingular., e.i. 0det 0A ≠ .  Then 
we can consider system (124) with known compatible vector valued function of initial 
conditions and we shall assume that  0rank E r n= < . 
Matrix 0E  is defined in the following way 1

0 0E A E−= . System (124) is asymptotically stable, 
independent of delay, if :  

 ( )1
2

1
12

1 min max 0
TA Q Q E Pσ σ −−

⎛ ⎞
⎜ ⎟<
⎜ ⎟
⎝ ⎠

,  (145)  

and if there exist  ( )n n×  matrix P , being the solution of Lyapunov matrix:  

 0 0 2
k

TE P PE I+ = − W ,  (146)  

with the properties given by (3)–(7). 
Moreover matrix P  is symmetric and positive definite on the subspace of consistent initial 
conditions. Here max( )σ ⋅  and min( )σ ⋅  are maximum and minimum singular values of 
matrix ( )⋅ , respectively (Debeljkovic et al. 2005.b, 2005.c, 2006.a). 
For the sake of brevity the proof is here omitted and is completely identical to that of 
preceding Theorem. 
Remark 3.1.1.6 Basic idea and approach is based upon the paper of (Pandolfi 1980) and 
(Tissir, Hmamed 1996). 
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3.1.2 Continuous singular time delayed systems – stability over finite time interval 
Let us consider the case when the subspace of consistent initial conditions for singular time 
delay and singular nondelay system coincide. 
STABILITY DEFINITIONS 
Definition 3.1.2.1 Regular and  impulsive free  singular time delayed system (124), is finite 
time stable with respect to { }0 , , ,t α βℑ S S , if and only if 0 k

∗∀ ∈x W  satisfying 

( ) 2 2
0 0 TT E EE E

t α= <x x , implies ( ) 2
,TE E

t tβ< ∀ ∈ ℑx . 

Definition 3.1.2.2 . Regular and  impulsive  free  singular time delayed system (124), is 
attractive practically stable with respect to { }0 , , ,t α βℑ S S , if and only if 0 k

∗∀ ∈x W  satisfying 

( ) 2 2
0 0 TT G E PEG E PE

t α
==

= <x x implies: ( ) 2
,TG E P E

t tβ
=

< ∀ ∈ ℑx , with property that 

( ) 2
lim 0TG E PEk

t
=→∞

→x , k
∗W  being the subspace of consistent initial conditions, (Debeljkovic 

et al. 2011.b). 
Remark 3.1.2.1  The singularity of matrix E  will ensure that solutions to (6) exist for only 
special choice of 0x . 

In (Owens, Debeljković 1985) the subspace of k
∗W  of consistent initial conditions is shown to 

be the limit of the nested subspace algorithm (12)–(14). 
STABILITY THEOREMS 

Theorem 3.1.2.1 Suppose that ( ) 0TI E E− > . Singular time delayed system (124), is finite time 

stable with respect to ( ){ }2
0 , , , ,t α βℑ ⋅ , α β< ,  if there exist a positive  real number q , 

1q > , such that:  

 ( ) ( ) ( ) ( )2 22 , ,0 , , ,kt q t t t t βϑ ϑ τ ∗+ < ∈ − ∀ ∈ ℑ ∈ ∀ ∈⎡ ⎤⎣ ⎦x x x xW S ,  (147)  

and if the following condition is satisfied: 

  ( )( )max 0 ,t te tλ β
α

Ξ − < ∀ ∈ ℑ ,  (148) 

where: 

 
( )

( ) ( ) ( ) ( )

1
max max 0 0 1 1

2

{ ( )( ( )

) , , 1}.

T T T T T T

T T
k

t A E E A E A I E E A E

q I t t t E E t

λ λ −

∗

Ξ = + + −

+ ∈ =

x

x x x xW
 (149) 

Proof.  Define tentative aggregation function as: 

 ( )( ) ( ) ( ) ( ) ( )
t

T T T

t

V t t E E t d
τ

ϑ ϑ ϑ
−

= + ∫x x x x x .  (150) 
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Let 0x  be an arbitrary consistent initial condition and ( )tx  resulting system trajectory. 

The total derivative ( )( ),V t tx along the trajectories of the system, yields: 

 
( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1

,

2

t
T T T

t
T T T T T T T

d dV t t t E E t d
dt dt

t A E E A t t E A t t t t t
τ

ϑ ϑ ϑ

τ τ τ
−

= +

= + + − + − − −

∫x x x x x

x x x x x x x x

  (151) 

From (148) it is obvious: 

 ( ) ( )( ) ( )( ) ( ) ( ) ( )0 0 12T T T T T T Td t E E t t A E E A t t E A t
dt

τ= + + −x x x x x x ,  (152) 

and based on well known inequality and with the particular choice: 

 ( ) ( ) ( )( ) ( ) ( ) { }0, \ 0T T T
kt t t I E E t t ∗Γ = − > ∀ ∈x x x x x W , (153) 

so: 
( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

0 0

1
1 1 .

T T T T T

T T T T T T

d t E E t t A E E A t
dt

t E A I E E A E t t I E E tτ τ
−

≤ +

+ − + − − −

x x x x

x x x x
  (154)  

Moreover, since: 

 ( ) ( ) { }2
0, \ 0T kE E

t tτ ∗− ≥ ∀ ∈x x W ,  (155) 

and using assumption (147), it is clear that (154) reduces to: 

 
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

1 2
0 0 1 1

max

T T T T T T T T

T T

d t E E t t A E E A E A E E I A E q I t
dt

t E E tλ

−⎛ ⎞< + + − +⎜ ⎟
⎝ ⎠

< Ξ

x x x x

x x
 (156) 

Remark 3.1.2. 2  Note that Lemma  2.2.1.1 and Theorem 2.2.1.1 indicates that: 

 ( )( ) ( ) ( )T TV t t E E t=x x x ,  (157) 

is positive quadratic form on k
∗W , and it is obvious that all smooth solutions ( )tx  evolve in 

k
∗W , so ( )( )V tx can be used as a Lyapunov function for the system under consideration, 

(Owens, Debeljkovic 1985). 
Using (149) one can get (Debeljkovic et al. 2011.b): 

 
( ) ( )( )

( ) ( )
( )

0 0

max

T Tt t

T T
t t

d t E E t
dt

t E E t
λ< Ξ∫ ∫

x x

x x
,  (158) 

and: 
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( ) ( ) ( ) ( ) ( )( )

( )( )

max 0

max 0

0 0

, .

t tT T T T

t t

t E E t t E E t e

e t Q.E.D.

λ

λ βα α β
α

Ξ −

Ξ −

<

< ⋅ < ⋅ < ∀ ∈ ℑ

x x x x
 (159) 

Remark 3.1.2.3 In the case on non-delay system, e.g. 1 0A ≡ , (148)  reduces to basic result , 

(Debeljkovic, Owens 1985). 
Theorem 3.1.2.2 Suppose that ( ) 0TQ E E− > . Singular time delayed system (124), with 

system matrix 0A  being nonsingular, is attractive practically stable with respect to 

( ){ }2
0 , , , , TG E PE

t α β
=

ℑ ⋅ , α β< , if there exist matrix 0TP P= > , being solution of: 

 0 0 ,T TA PE E PA Q+ = −   (160) 

with  matrices 0T TQ Q S S= > ∧ = , such that: 

 ( )( ) ( ) ( ) { }0, \ 0T
kt S Q t t ∗+ > ∀ ∈x x x W ,  (161) 

is positive definite quadratic form on { }\ 0k
∗W , k

∗W  being the subspace of consistent initial 
conditions,  if there exist a positive  real number q , 1q > , such that:  

 ( ) ( ) ( ) ( ) { }2 22 , , , \ 0kQ Q
t q t t t tβτ ∗− < ∀ ∈ ℑ ∀ ∈ ∀ ∈x x x x WS ,  (162)  

and if the following conditions are satisfied (Debeljkovic et al. 2011.b): 

 ( ) ( )1 1
2 21

1 min max 0
TA Q Q A Pσ σ −−< ,  (163) 

and:  

 ( )( )max 0 ,t te tλ β
α

Ψ − < ∀ ∈ ℑ ,  (164) 

where: 

 
( )

( ) ( ) ( )

1 2
max 1 1max{ ( )( ( ) ) ( ),

, 1}.

T T T T

T T
k

t E PA Q E PE A PE q Q t

t t E PE t

−

∗

Ψ = − +

∈ =

x x

x x x

λ

W
 (165) 

Proof.  Define tentative aggregation function as: 

 ( )( ) ( ) ( ) ( ) ( )
t

T T T

t

V t t E PE t Q d
τ

ϑ ϑ ϑ
−

= + ∫x x x x x .  (166) 

The total derivative ( )( ),V t tx along the trajectories of the system, yields: 
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( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 1

,

2

.

t
T T T

t
T T T T T

T T

d dV t t t E PE t Q d
dt dt

t A PE E PA t t E PA t

t Q t t Q t

τ

ϑ ϑ ϑ

τ

τ τ

−

= +

= + + −

+ − − −

∫x x x x x

x x x x

x x x x

 (167) 

From (162), it  is obvious: 

 ( ) ( )( ) ( )( ) ( ) ( ) ( )0 0 12T T T T T T Td t E PE t t A PE E PA t t E PA t
dt

τ= + + −x x x x x x ,  (168) 

or: 
( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )
0 0

12 .

T T T T T

T T T

d t E PE t t A PE E PA Q S t
dt

t E PA t t Q S tτ

= + + +

+ − − +

x x x x

x x x x
 (169) 

From (160), it follows: 

 ( ) ( )( ) ( )( ) ( ) ( ) ( )12T T T T Td t E PE t t Q S Q t t E PA t
dt

τ= − + + −x x x x x x ,  (170)  

as well, using before mentioned inequality, with particular choice:  

 ( ) ( ) ( )( ) ( ) ( ) { }0, \ 0T T T T T
kt t t Q E PE t t ∗Γ = − > ∀ ∈x x x x x W ,  (171) 

and fact that: ( )( ) ( ) ( ) { }0, \ 0T
kt Q S t t ∗+ > ∀ ∈x x x W ,  (172) 

is positive definite quadratic form on { }\ 0k
∗W , one can get : 

 
( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

1

1
1 1

2T T T T

T T T T T T

d t E PE t t E PA t
dt

t E PA Q E PE A PE t t Q E PE t

τ

τ τ
−

= −

≤ − + − − −

x x x x

x x x x
  (173) 

Moreover, since: 

 ( ) ( ) { }2
0, \ 0T kE PE

t tτ ∗− ≥ ∀ ∈x x W ,  (174) 

and using assumption (162) it is clear that (173), reduces to: 

 ( ) ( )( ) ( ) ( ) ( )
1 2

1 1
T T T T T Td t E PE t t E PA E PE Q A PE q Q t

dt
−⎛ ⎞< − +⎜ ⎟

⎝ ⎠
x x x x , (175) 

or using (169), one can get: 

 
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

1 2
1 1

max

T T T T T T

T T

d t E PE t t E PA E PE Q A PE q Q t
dt

t E PE tλ

−⎛ ⎞< − +⎜ ⎟
⎝ ⎠

< Ψ

x x x x

x x
 (176) 
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or finally: 

 
( ) ( ) ( ) ( ) ( )( )

( )( )

max 0

max 0

0 0

, .

t tT T T T

t t

t E PE t t E PE t e

e t Q.E.D.

λ

λ βα α β
α

Ψ −

Ψ −

<

< ⋅ < ⋅ < ∀ ∈ ℑ

x x x x
 (177) 

3.2 Discrete descriptor time delayed systems 
3.2.1 Discrete descriptor time delayed systems – Stability in the sense of Lyapunov 
Consider a linear discrete descriptor system with state delay, described by:  

 ( ) ( ) ( )0 11 1E k A k A k+ = + −x x x , (178) 

 ( ) ( )0 0 0, 1 0k k k= − ≤ ≤x φ ,  (179) 

where ( ) nk ∈x  is a state vector. The matrix n nE ×∈  is a necessarily singular matrix, with 
property rank E r n= <  and with matrices 0A  and 1A  of appropriate dimensions. 

For a (DDTDS), (178), we present the following definitions taken from,  (Xu et al. 2002.b). 
Definition 3.2.1.1 The (DDTDS) is said to be regular if ( )2

0 1det z E zA A− − , is not identically 

zero. 
Definition 3.2.1.2 The  (DDTDS) is said to be causal  if it is regular and 

( )( )1
0 1deg detnz zE A z A n rangE−− − = + . 

Definition 3.2.1.3 The (DDTDS) is said to be stable if it is regular and ( ) ( )0 1, , 0,1E A A Dρ ⊂ , 

where ( ) ( ){ }2
0 1 0 1, , | det 0E A A z z E zA Aρ = − − = . 

Definition 3.2.1.4 The (DDTDS) is said to be admissible if it is  regular, causal  and stable. 
STABILITY DEFINITIONS 

Definition 3.2.1.5 System (178) is E -stable if for any 0ε > , there always exists a positive δ  
such that ( )E k ε<x , when 0E δ<x , (Liang 2000). 

Definition 3.2.1.6 System (178) is E - asymptotically stable if (178) is E - stable 
and ( )lim

k
E k

→+∞
→x 0 , (Liang 2000). 

STABILITY THEOREMS 

Theorem 3.2.1.1 Suppose that system (173) is regular and causal with system matrix 0A  being 
nonsingular, i.e. 0det 0A ≠ . System (178) is asymptotically stable, independent of delay, if 

 
( )1

2

1
2

min

1
max 0

T

Q

A
Q A P

σ

σ −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠< ,  (180)  
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and if there exist a symmetric positive definite matrix P  on the whole state space, being the 
solution of discrete Lyapunov matrix equation : 

 ( )0 0 2T TA PA E PE S Q− = − + ,  (181) 

with  matrices 0TQ Q= >  and TS S= , such that: 

 ( )( ) ( ) ( ) { },0, \ 0T
d kk S Q k k ∗+ > ∀ ∈x x x W ,  (182) 

is positive definite quadratic form on { }, \ 0d k∗W , ,d k∗W being the subspace of consistent 
initial conditions. Here max( )σ ⋅  and min( )σ ⋅  are maximum and  minimum  singular values of 
matrix ( )⋅ , respectively, (Debeljkovic et al. 2004). 
Remark 3.2.1.1 (181 - 182) are, in modify form, taken from (Owens, Debeljkovic 1985). 
Remark 3.2.1.2 If the system under consideration is just ordinary time delay, e.g. ,E I=  we 
have result identical to that presented in Debeljkovic et al. (2004.a – 2004.d, 2005.a, 2005.b). 
Remark 3.2.1.3 Idea and approach is based upon the papers of (Owens, Debeljkovic  1985) and 
(Tissir, Hmamed 1996). 
Theorem 3.2.1.2 Suppose that system (178) is regular and causal. Moreover, suppose matrix 

( )1 1
TQ A P Aλ λ− is regular, with 0TQ Qλ λ= > .  

System (178)  is asymptotically stable, independent of delay, if: 

 
( )

( )1
2

1
2

min 1 1

1

max 0

T

T

Q A P A

A
Q A E P

λ λ

λ λ

σ

σ λ−

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠<

⎛ ⎞−⎜ ⎟
⎝ ⎠

,  (183)  

and if there exist real positive scalar 0λ∗ >  such that for all λ  within the range 0 λ λ∗< <  
there exist symmetric positive definite matrix Pλ , being the solution of discrete Lyapunov 
matrix equation: 

 ( ) ( ) ( )0 0 2
T TA E P A E E P E S Qλ λ λ λλ λ− − − = − +  (184) 

with matrix  TS Sλ λ= , such that: 

 ( )( ) ( ) ( ) { },0, \ 0T
d kk S Q k kλ λ ∗+ > ∀ ∈x x x W  (185) 

is positive definite quadratic form on { }, \ 0d k∗W , ,d k∗W being the subspace of consistent 
initial conditions for both time delay and non-time delay discrete descriptor system. Such 
conditions we call compatible consistent initial conditions. Here max( )σ ⋅  and min( )σ ⋅  are 
maximum and minimum  singular values of matrix (⋅) respectively, (Debeljkovic et al. 2007). 

3.2.2 Discrete descriptor time delayed systems – stability over finite time interval 
To the best knowledge of the authors, there is not any paper treating the problem of finite 
time stability for discrete descriptor time delay systems. Only one paper has been written in 
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context of practical and finite time stability for continuous singular time delay systems, see 
(Yang et al. 2006).  
Definition 3.2.2.1 Causal system, given by (178), is finite time stable with respect to 

{ }0 , , ,Nk α βK S S , if and only if 0 ,d k∗∀ ∈x W  satisfying 2
0 ,TE E α<x  implies: 

( ) 2
,T NE E

k kβ< ∀ ∈x K . 

Definition 3.2.2.2 Causal system given by (178), is practically unstable with respect 

( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if  and only if 0 ,d k∗∃ ∈x W  such that 2

0 ,TE E α<x  there exist some 

*
Nk ∈K , such that the following condition is fulfilled ( ) 2

*
TE E

k β≥x , for some *
Nk ∈K . 

Definition 3.2.2.3 Causal system, given by (178), is attractive practically stable with respect to 

{ }0 , , ,Nk α βK S S , if and only if 0 ,d k∗∀ ∈x W  satisfying ( ) 2 2
0 0 TT G E P EG E P E

k α
==

= <x x , 

implies ( ) 2
,T NG E PE

k kβ
=

< ∀ ∈x K , with property that  ( ) 2
lim 0TG E P Ek

k
=→∞

→x , (Nestorovic & 

Debeljkovic 2011). 
Remark 3.2.2.1 We shall also need the following Definitions of the smallest and the largest 
eigenvalues, respectively, of the matrix TR R= , with respect to subspace of consistent initial 
conditions ,d k∗W  and matrix G . 
Proposition 3.2.2.1 If ( ) ( )T t R tx x  is quadratic form on n , then it follows that there exist 

numbers ( )min Rλ  and ( )max Rλ  satisfying: ( ) ( )min maxR Rλ λ−∞ ≤ ≤ ≤ +∞ , such that: 

 ( ) ( ) ( )
( ) ( )

( ) ( ) { }min max ,, \ 0
T

T d k
k R k

k
k G k

λ λ ∗Ξ ≤ ≤ Ξ ∀ ∈
x x

x
x x

W ,  (186) 

with matrix  TR R=  and corresponding eigenvalues: 

 ( ) ( ) ( ) ( ) { } ( ) ( ){ }min , ,, , min : \ 0 , 1T T
d k d kR G k R k k k G kλ ∗ ∗= ∈ =x x x x xW W ,  (187) 

 ( ) ( ) ( ) ( ) { } ( ) ( ){ }max , ,, , max : \ 0 , 1T T
d k d kR G k R k k k G kλ ∗ ∗= ∈ =x x x x xW W . (188)  

Note that min 0λ >  if  0TR R= > . 

Let us consider the case when the subspace of consistent initial conditions for discrete 
descriptor time delay and discrete descriptor nondelay system coincide. 
STABILITY THEOREMS 

Theorem 3.2.2.1 Suppose matrix ( )1 1 0T TA A E E− > . Causal system given by (178), is finite 

time stable with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if there exist a  positive real number 

p , 1p > , such that:  
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 ( ) ( ) ( ) ( ) { }
1 1 1 1

2 22
,1 , , , \ 0T T N d kA A A A

k p k k k kβ
∗− < ∀ ∈ ∀ ∈ ∀ ∈x x x x WK S  (189)  

and if the following condition is satisfied (Nestorovic & Debeljkovic 2011): 

 ( )max ,k
Nkβλ

α
< ∀ ∈K ,  (190) 

where: 

 
( ) ( )

( ) ( ) ( ) ( )

1
max max 0 1 1 1 1

2
1 1 0 ,

{ ( ( )

) , , 1}.

T T T T T

T T T
d k

k A I A A A E E A

p A A A k k k E E k

λ λ

∗

−= − −

+ ∈ =

x

x x x xW
 (191) 

Proof. Define: 

 ( )( ) ( ) ( ) ( ) ( )1 1T TV k k k k k= + − −x x x x x . (192) 

Let 0x  be an arbitrary consistent initial condition and ( )kx  the resulting system trajectory. 

The backward difference ( )( )V kΔ x along the trajectories of the system, yields: 

 
( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
00

1 1 102 1 1 1

T TT

TT T T

V k k A A E E I k

k A A k k A A I k

Δ = − +

+ − + − − −

x x x

x x x x
 (193) 

From (192) one can get: 

 
( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
00

1 1 10

1 1

2 1 1 1

TTT T

TT T T

k E E k k A A k

k A A k k A A k

+ + =

+ − + − −

x x x x

x x x x
  (194)  

Using the very well known inequality, with particular choice: 

 ( ) ( ) ( )( ) ( ) ( ) ( )1 1 ,0, , ,T T T T
Nd kk k k A A E E k k k kβ∗Γ = − ≥ ∈ ∀ ∈ ∀ ∈x x x x x xW KS ,  (195) 

it can be obtained: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
0 0

1
0 1 1 1 1 0 1 1

1 1

1 2 1

T T T T

T T T T T T T T

k E E k k A A k

k A A A A E E A A k k A A E E k
−

+ + ≤

− − + − − −

x x x x

x x x x
 (196) 

Moreover, since:  

 ( ) ( ) { }2
,1 0, , \ 0T N d kE E

k k k ∗− ≥ ∀ ∈ ∀ ∈x xK W   (197) 

and using assumption (189) it is clear that (196), reduces to: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2
0 1 1 1 1 0

max

1 1 2T T T T T T T

T T

k E E k k A I A A A E E A p I A k

k E E kλ

−⎛ ⎞+ + < − − +⎜ ⎟
⎝ ⎠

<

x x x x

x x
 (198) 
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( ) ( ) ( ) ( )

( ) ( ) ( )

1 2
max 0 1 1 1 1 0where : { 2 ,

, 1}.

T T T T T

T T
dis

k A I A A A E E A p I A k

k k E E k

λ
−

∗

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

∈ =

x x

x x xW
 (199) 

Following the procedure from the previous section, it can be written: 

 ( ) ( ) ( ) ( ) ( )maxln 1 1 ln lnT T T Tk E E k k E E k λ+ + − <x x x x . (200) 

By applying the summing 
0

0

1k k

j k

+ −

=
∑ on both sides of (200) for  Nk∀ ∈K , one can obtain: 

 
( ) ( ) ( )

( ) ( ) ( )

0

0

1

0 0 max

max 0 0

ln ln

ln ln ,

k k
T T

j k

k T T
N

k k E E k k

k E E k k

λ

λ

+ −

=

+ + ≤

≤ + ∀ ∈

∏x x

x x K

 (201) 

Taking into account the fact that 2
0 TE E

α<x  and the condition of Theorem 3.2.2.1, eq. (190), 
one can get: 

 
( ) ( ) ( ) ( ) ( )

( )
0 0 max 0 0

max

ln ln ln

ln ln ln , . .

T T k T T

k
N

k k E E k k k E E k

k Q.E.D

λ
βα λ α β
α

+ + < +

< ⋅ < ⋅ < ∀ ∈

x x x x

K
 (202) 

Theorem 3.2.2.2 Suppose matrix ( )1 1 0T TA A E E− > . Causal system (178), is finite time unstable 

with respect  to ( ){ }2
0 , , , ,Nk α β ⋅K ,α β< ,  if there exist a  positive  real number p , 1p > , 

such that:  

 ( ) ( ) ( ) ( ) { }
1 1 1 1

2 22
,1 , , , \ 0T T N d kA A A A

k p k k k kβ
∗− < ∀ ∈ ∀ ∈ ∀ ∈x x x x WK S  (203) 

 and if for 0 ,d k∗∀ ∈x W  and 2
0 TG E E α

=
<x  there exist: real, positive number ,  0,δ δ α∈ ⎤ ⎡⎦ ⎣  

and time instant *,  :k k k= ( )*
0 Nk k∃! > ∈K , for which the next condition is fulfilled 

(Nestorovic & Debeljkovic 2011): 

 ( ) *
min ,k

Nkβλ
δ

∗
> ∈K   (204) 

where: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
min min 0 1 1 1 1 0{ 2 ,

, 1}.

T T T T T

d T T
k

k A I A A A E E A k I A k

k k E E k

λ λ

∗

−⎛ ⎞= − − + ℘⎜ ⎟
⎝ ⎠

∈ =

x x

x x xW
 (205) 

Proof. Following the identical procedure as in the previous Theorem, with the same 
aggregation function, one can get: 
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( ) ( ) ( ) ( ) ( )

( )

0 0 min 0 0

min

ln ln ln

ln ln ln , forsome ,
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k
N

k k E E k k k E E k

k

λ

βδ λ δ β
δ

∗

∗

∗ ∗

∗

+ + > +

> ⋅ > ⋅ > ∈

x x x x

K
 (206)  

 where ( )minλ is given by (187). Q.E.D. 

Theorem 3.2.2.3 Suppose matrix ( )1 1 0T TA PA E PE− ≥ . Causal system given by (178), with 

0det 0A ≠ , is attractive practically stable with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if there 

exists  a matrix 0TP P= > , being the  solution of: 

 ( )0 0 2T TA PA E PE Q S− = − + , (207) 

with matrices 0TQ Q= >  and TS S= , such that: 

 ( )( ) ( ) ( ) { },0, \ 0T
d kk Q S k k ∗+ > ∀ ∈x x x W  (208) 

is positive definite quadratic form on { }, \ 0d k∗W , p  real number, 1p > , such that:  

 ( ) ( ) ( ) ( ) { }
1 1 1 1

2 22
,1 , , , \ 0T T N k dA PA A PA

k p k k k kβ
∗− < ∀ ∈ ∀ ∈ ∀ ∈x x x xK WS  (209)  

and if the following conditions are satisfied (Nestorovic & Debeljkovic 2011): 

 ( )1
2

1
12

1 min max
TA Q Q E Pσ σ −−

⎛ ⎞
⎜ ⎟<
⎜ ⎟
⎝ ⎠

, (210) 

and 

 ( )max ,k
Nkβλ

α
< ∀ ∈K , (211) 

where: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

1 11 22 2
max 0 1 1 1 1 0

,

max{ :

, 1}.

T T T T T

T T
d k

k A P I A A PA E PE A p I P A k

k k E PE k

λ

∗

−⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

∈ =

x x

x x xW
 (212) 

Proof. Let us consider the functional:   

 ( )( ) ( ) ( ) ( ) ( )1 1T T TV k k E PE k k Q k= + − −x x x x x  (213) 

with matrices 0TP P= >  and  0TQ Q= > . 
Remark 3.2.2.2 (208 – 209) are, in modified form, taken from (Owens, Debeljkovic 1985). 
For given (213), general backward difference is: 
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( )( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 .

TT

TT T T

V k V k V k k E PE k

k Q k k E PE k k Q k

Δ = + − = + +

+ − − − −

x x x x x

x x x x x x
 (214) 

Clearly, using the equation of motion (178), we have: 

 
( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
0 0

0 1 1 12 1 1 1 ,

T T T

T T T T

V k k A PA E PE Q k

k A PA k k Q A PA k

Δ = − +

+ − − − − −

x x x

x x x x
 (215) 

or 

 
( )( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )
0 0

0 1 1 1

2 2

2 2 1 1 1 .

T T T T

T T T T T

V k k A PA E PE Q S k k Q k

k S k k A PA k k Q A PA k

Δ = − + + −

− + − − − − −

x x x x x

x x x x x x
 (216) 

Using (208) and (209) yields: 

 
( ) ( ) ( ) ( )
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0 0

0 1 1 1

1 1

2 1 1 1 .

TT T T

T T T T
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Using the very well known inequality, with particular choice: 

 
( ) ( ) ( )( ) ( )

( ) ( )
1 1 0,

, ,

T T T T

d
Nk

k k k A PA E PE k

k k kβ∗

Γ = − ≥
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x x x x

x xW KS
 (218) 

one can get: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0 0 0 1 1 1

1
1 0 1 1

1 1 (
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T T T T T
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x x x x x

x x x
 (219) 

Moreover, since: 

 ( ) ( ) { }2
,1 0, , \ 0T N d kE PE

k k k ∗− ≥ ∀ ∈ ∀ ∈x xK W  (220) 

and using assumption (209) it is clear that (219), reduces to: 

( ) ( ) ( ) ( ) ( )
1 11 22 2

0 1 1 1 1 01 1 2TT T T T T Tk E PE k k A P I A A PA E PE A p I P A k
−⎛ ⎞+ + ≤ − − +⎜ ⎟

⎝ ⎠
x x x x  (221) 

Using very well known the property of quadratic form, one can get: 

 ( ) ( ) ( ) ( ) ( )max1 1T TT Tk E PE k k E PE kλ+ + ≤x x x x  (222) 

where: 

      ( )
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1 1
1 22 2

max 0 1 1 1 1 0
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T T T T T

T T
d k
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x x
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              (223) 
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Then following the identical procedure as in the Theorem  3.2.2.1, one can get: 

 ( ) ( ) ( ) ( ) ( )maxln 1 1 ln lnT T T Tk E PE k k E PE k λ+ + − <x x x x  (224) 

where ( )maxλ is given by (223). 

If the summing 
0

0

1k k

j k

+ −

=
∑ is applied to both sides of (224) for  Nk∀ ∈K , one can obtain: 
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 (225) 

Taking into account the fact that 2
0 TE PE

α<x  and the basic condition of Theorem 3.2.2.3, 

(211), one can get: 

 
( ) ( ) ( ) ( ) ( )

( )
0 0 max 0 0

max

ln ln ln

ln ln ln , .

T T k T T

k
N

k k E PE k k k E PE k

k Q.E.D.

λ
βα λ α β
α

+ + < +

< ⋅ < ⋅ < ∀ ∈

x x x x

K
 (226) 

4. Conclusion 
The first part of this chapter is devoted to the stability of particular classes of linear continuous 
and discrete time delayed systems. Here, we present a number of new results concerning 
stability properties of this class of systems in the sense of Lyapunov and non-Lyapunov and 
analyze the relationship between them. Some open question can arise when particular choice 
of parameters p and q is needed, see (Su & Huang 1992), (Xu & Liu 1994) and (Su 1994). 
The geometric theory of consistency leads to the natural class of positive definite quadratic 
forms on the subspace containing all solutions. This fact makes possible the construction of 
Lyapunov stability theory even for linear continuous singular time delayed systems 
(LCSTDS) and linear discrete descriptor time delayed systems (LDDTDS) in that sense that 
asymptotic stability is equivalent to the existence of symmetric, positive definite solutions to 
a weak form of Lyapunov continuous (discrete) algebraic matrix equation (Owens, Debeljkovic 
1985) respectively, incorporating condition which refers to time delay term.  
To assure asymptotical stability for (LCSTDS) it is not only enough to have the eigenvalues of 
the matrix pair (E, A) in the left half complex plane or within the unit circle, respectively, but 
also to provide an impulse-free motion and some other certain conditions to be fulfilled for 
the systems under consideration. The idea and the approach, in this exposure, are based 
upon the papers by (Owens, Debeljkovic1985) and (Tissir, Hmamed 1996). 
Some different approaches have been shown in order to construct Lyapunov stability theory 
for a particular class of autonomous (LCSTDS) and (LDDTDS). 
The second part of the chapter is concerned with the stability of particular classes of 
(LCSTDS) and (LDDTDS). There, we present a number of new results concerning stability 
properties of this class of systems in the sense of non-Lyapunov (finite time stability, practical 
stability, attractive practical stability, etc.) and analyse the relationship between them.  
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And finally this chapter extends some of the basic results in the area of non-Lyapunov to 
linear, continuous singular time invariant time-delay systems (LCSTDS) and (LDDTDS). In that 
sense the part of this result is hence a geometric counterpart of the algebraic theory of 
Campbell (1980) charged with appropriate criteria to cover the need for system stability in the 
presence of actual time delay term. To assure practical stability for (LCSTDS) it is not enough 
only to have the eigenvalues of matrix pair (E, A) somewhere in the complex plane, but also 
to provide an impulse-free motion and certain conditions to be fulfilled for the system under 
consideration.  
Some different approaches have been shown in order to construct non-Lyapunov stability 
theory for a particular class of autonomous (LDDTDS). The geometric description of 
consistent initial conditions that generate tractable solutions to such problems and the 
construction of non-Lyapunov stability theory to bound rates of decay of such solutions are 
also investigated. Result are based on existing Lyapunov-like functions and their properties 
on sub-space of consistent initial functions (conditions). In particular, these functions need 
not to have: a) Properties of positivity in the whole state space and b) negative derivatives 
along the system trajectories. 
And finally a quite new approach leads to the sufficient delay–independent criteria for finite 
and attractive practical stability of (LCSTDS) and (LDDTDS).  
Stability issues, as well as time delay and singularity phenomena play a significant role in 
modeling of real systems. A need for their consideration arises from growing interest and 
extensive application possibilities in different areas such as large-scale systems, flexible 
light-weight structures and their vibration and noise control, optimization of smart 
structures (Nestorovic et al. 2005, 2006, 2008) etc. Development of reliable models plays a 
crucial role especially in early development phases, which enables performance testing, 
design review, optimization and controller design (Nestorovic & Trajkov 2010.a). 
Assumptions introduced along with model development, especially e.g. reduction of large 
numerical models of smart structures require consideration of many important questions 
from the control theory point of view, whereby the stability and singularity phenomena 
count among some of the most important.  Therefore they represent the focus of the authors’ 
ongoing and further research activities (Debeljkovic et al. 2011.b, Nestorovic & Trajkov 2010.b). 
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1. Introduction

During the past decades, many researchers have investigated stability of switched systems;
due to its potential for real world application such as transportation systems, computer
systems, communication systems, control of mechanical systems, etc. A switched systems
is composed of a family of continuous time (Alan & Lib, 2008; Alan & Lib, 2009, Alan et al.,
2008; Hien et al., 2009; Hien & Phat, 2009; Kim et al., 2006; Li et al., 2009; Niamsup, 2008; Li
et al., 2009; Lien et al., 2009; Lib et al., 2008) or discrete time systems (Wu et al., 2004) and a
switching condition determining at any time instant which subsystem is activated.

In recent years, the stability of systems with time delay has received considerable attention.
Switched system in which all subsystems are stable was studied in (Lien et al., 2009) and
switched system in which subsystems are both stable and unstable was studied in (Alan &
Lib, 2008; Alan & Lib, 2009, Alan et al., 2008). The commonly used approach to stability
analysis of switched systems is Lyapunov theory and some important preliminaries results
have been applied to obtain sufficient conditions for stability of switched systems. A single
Lyapunov function approach is used in (Alan & Lib, 2008) and a multiple Lyapunov functions
approach is used in (Hien et al., 2009; Kim et al., 2006; Li et al., 2009; Lien et al., 2009; Lib
et al., 2008) and the references therein. The asymptotical stability of the linear with time
delay and uncertainties has been considered in (Lien et al., 2009). In (L.V.Hien et al., 2009),
the authors investigated the exponential stability and stabilization of switched linear systems
with time varying delay and uncertainties by using the strictly complete systems of matrices
approach. The strictly complete of the matrices has been also used for the switching condition,
see (Hien et al., 2009; Huang et al., 2005; Niamsup, 2008; Lib et al., 2008; Wu et al., 2004). In
this paper, stability analysis for switched linear and nonlinear systems with uncertainties and
time-varying delay are studied. We obtain the new conditions for exponential stability of
switched system in which subsystems consist of stable and unstable subsystems. The stability
conditions are derived in terms of linear matrix inequality (LMI) by using a new Lyapunov
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function. The free weighting matrices and Newton-Leibniz formula are applied. As a results,
the obtained stability conditions are less conservative comparing to some previous existing
results in the literatures. In particular, comparing to (Alan & Lib, 2008), our results give a
much less conservative results, namely, for stable subsystems, the condition that state matrices
are Hurwitz stable is not required. Moreover, advantages of the paper are that the delay is
time-varying and switched system may have uncertainties. The paper is organized as follows.
In section 1, problem formulation and introduction is addressed. In section 2, we give some
notations, definitions and the preliminary results that will be used in this paper. Switching
design for the exponential stability of the switched system is presented in Section 3. In section
4, numerical examples are given to illustrate the theoretical results. The paper ends with
conclusions and cited references.

2. Preliminaries

The following notations will be used throughout this paper. Rn denotes the n-dimensional
Euclidean space. Rn×n denotes the space of all matrices of n × n-dimensions. AT denotes
the transpose of A. I denotes the identity matrix. λ(A), λM(A), λm(A) denote the set of
all eigenvalues of A, the maximum eigenvalue of A, and the minimum eigenvalue of A,
respectively. For all real symmetric matrix X, the notation X > 0(X ≥ 0, X < 0, X ≤ 0) means
that X is positive definite (positive semidefinite, negative definite, negative semidefinite,
respectively.) For a vector x, ‖xt‖ = sups∈[−hM,0] ‖x(t + s)‖ with ‖x‖ being the Euclidean
norm of vector x.

The switched system under the consideration is described by

ẋ(t) = [Aσ + ΔAσ(t)]x(t) + [Bσ + ΔBσ(t)]x(t− h(t))

+ fσ(t, x(t), x(t− h(t))), t > 0,

x(t) = φ(t), t ∈ [−hM, 0], (1)

where x(t) ∈ Rn is the state vector. σ(·) : Rn → S = {1, 2, ..., N} is the switching function.
Let i ∈ S = Su ∪ Ss such that Su = {1, 2, ..., r} and Ss = {r + 1, r + 2, ..., N} be the set of the
unstable and stable modes, respectively. N denotes the number of subsystems. Ai, Bi ∈ Rn×n

are given constant matrices. ΔAi(t), ΔBi(t) are uncertain matrices satisfying the following
conditions:

ΔAi(t) = E1iF1i(t)H1i, ΔBi(t) = E2iF2i(t)H2i, (2)

where Eji, Hji, j = 1, 2, i = 1, 2, ..., N are given constant matrices with appropriate dimensions.
Fji(t) are unknown, real matrices satisfying:

FT
ji (t)Fji(t) ≤ I, j = 1, 2, i = 1, 2, ..., N, ∀t ≥ 0, (3)

where I is the identity matrix of appropriate dimension.
The nonlinear perturbation fi(t, x(t), x(t − h(t))), i = 1, 2, ..., N satisfies the following
condition:

‖ fi(t, x(t), x(t− h(t))) ‖≤ γi ‖ x(t) ‖ +δi ‖ x(t− h(t)) ‖ (4)

for some γi, δi > 0. The time-varying delay function h(t) is assumed to satisfy one of the
following conditions:
(i) when ΔAi(t) = 0 and ΔBi(t) = 0 and fi(t, x(t), x(t− h(t))) = 0
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0 ≤ hm ≤ h(t) ≤ hM, ḣ(t) ≤ μ, t ≥ 0,

(ii) when ΔAi(t) 	= 0 or ΔBi(t) 	= 0 or fi(t, x(t), x(t− h(t))) 	= 0

0 ≤ hm ≤ h(t) ≤ hM, ḣ(t) ≤ μ < 1, t ≥ 0,

where hm, hM and μ are given constants.
Definition 2.1 (Hien et al., 2009) Given β > 0. The system (1) is β−exponentially stable if
there exists a switching function σ(·) and positive number γ such that any solution x(t, φ) of
the system satisfies

‖ x(t, φ) ‖≤ γe−βt ‖ φ ‖, ∀t ∈ R+,

for all the uncertainties.
Lemma 2.1 (Hien et al., 2009) For any x, y ∈ Rn, matrices W, E, F, H with W > 0, FTF ≤ I, and
scalar ε > 0, one has
(1.) EFH + HT FTET ≤ ε−1EET + εHT H,
(2.) 2xTy ≤ xTW−1x + yTWy.
Lemma 2.2 (Alan & Lib, 2008) Let u : [t0, ∞] → R satisfy the following delay differential
inequality:

u̇(t) ≤ αu(t) + β sup
θ∈[t−τ,t]

u(θ), t ≥ t0.

Assume that α + β > 0. Then, there exist positive constant ξ and k such that

u(t) ≤ keξ(t−t0), t ≥ t0,

where ξ = α + β and k = sup
θ∈[t0−τ,t0]

u(θ).

Lemma 2.3 (Alan & Lib, 2008) Let the following differential inequality:

u̇ ≤ −αu(t) + β sup
θ∈[t−τ,t]

u(θ), t ≥ t0,

hold. If α > β > 0, then there exist positive k and ζ such that

u(t) ≤ ke−ζ(t−t0), t ≥ t0,

where ζ = α− β and k = sup
θ∈[t0−τ,t0]

u(θ).

Lemma 2.4 (Schur Complement Lemma) (Boyd et al., 1985) Given constant symmetric Q, S
and R ∈ Rn×n where R > 0, Q = QT and R = RT we have[

Q S
ST −R

]
< 0 ⇔ Q + SR−1ST

< 0.

3. Main results

In this section, we establish exponential stability of uncertain switched system with
time-varying delay. For simplicity of later presentation, we use the following notations:

λ+ = max
i
{ξi, ∀i ∈ Su}, ξi denotes the growth rates of the unstable modes.

λ− = min
i
{ζi, ∀i ∈ Ss}, ζi denotes the decay rates of the stable modes.
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T+(t0, t) denotes the total activation times of the unstable modes over [t0, t).
T−(t0, t) denotes the total activation times of the stable modes over [t0, t).
N(t) denotes the number of times the system is switched on [t0, t).
l(t) denotes the number of times the unstable subsystems are activated on [t0, t).
N(t)− l(t) denotes the number of times the stable subsystems are activated on [t0, t).

ψ =
max

i
{λM(Pi)}

min
j
{λm(Pj)}

.

α1 = min
i
{λm(Pi)}.

α2 = max
i
{λM(Pi)}+ hM max

i
{λM(Qi)}+

h2
M
2

max
i
{λM(Ri)}

+ h2
M max

i
{λM(

[
S11,i S12,i
ST

12,i S22,i

]
)}

+ 2h2
M max

i
{λM(AT

i Ti Ai), λM(AT
i TiBi), λM(BT

i Ti Ai), λM(BT
i TiBi)},

α3 = max
i
{λM(Pi)}+ hM max

i
{λM(Qi)}+

h2
M
2

max
i
{λM(Ri)}

+ h2
M max

i
{λM(

[
S11,i S12,i
ST

12,i S22,i

]
)}.

Ω1,i =

[
Φ11,i Φ12,i
∗ Φ13,i

]
,

Φ11,i = AT
i Pi + Pi Ai + Qi + hMRi + hMS11,i + hM AT

i Ti Ai,
Φ12,i = BT

i Pi + hMS12,i + hM AT
i TiBi,

Φ13,i = −(1− μ)e−2βhM Qi + hMS22,i + hMBT
i TiBi.

Ω2,i =

[
Φ21,i Φ22,i
∗ Φ23,i

]
,

Φ21,i = AT
i Pi + Pi Ai + Qi + hMRi + hMS11,i + hM AT

i Ti Ai + hMX11,i + Yi + YT
i ,

Φ22,i = BT
i Pi + hMS12,i + hM AT

i TiBi + hMX12,i − Yi + ZT
i ,

Φ23,i = −(1− μ)e−2βhM Qi + hMS22,i + hMBT
i TiBi + hMX22,i − Zi − ZT

i .

Ω3,i =

⎡
⎣X11,i X12,i Yi
∗ X22,i Zi
∗ ∗ Ti

2

⎤
⎦ .

Ξi =

[
Φ31,i Φ32,i
∗ Φ33,i

]
,

Φ31,i = AT
i Pi + Pi Ai + Qi + hMRi + hMS11,i + ε−1

1i HT
1i H1i + ε1iPiET

1iE1iPi + ε2iPiET
2iE2iPi,

Φ32,i = BT
i Pi + hMS12,i,

Φ33,i = −(1− μ)e−2βhM Qi + hMS22,i + ε−1
2i HT

2iH2i.

Θi =

[
Φ41,i Φ42,i
∗ Υ43,i

]
,

Φ41,i = AT
i Pi + Pi Ai + Qi + hMRi + hMS11,i + ε−1

3i γi I + ε3iPiPi + ε−1
4i HT

4iH4i

+ ε4iPiET
4iE4iPi + ε6iPiET

5iE5iPi,
Φ42,i = BT

i Pi + hMS12,i,
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Φ43,i = −(1− μ)e−2βhM Qi + hMS22,i + ε−1
3i δi I + ε−1

5i HT
5i H5i.

3.1 Exponential stability of linear switched system with time-varying delay
In this section, we deal with the problem for exponential stability of the zero solution
of system (1) without the uncertainties and nonlinear perturbation (ΔAi(t) = ΔBi(t) =
0, fi(t, x(t), x(t− h(t))) = 0).
Theorem 3.1 The zero solution of system (1) with ΔAi(t) = ΔBi(t) = 0 and fi(t, x(t), x(t −
h(t))) = 0 is exponentially stable if there exist symmetric positive definite matrices Pi, Qi, Ri,[

S11,i S12,i
ST

12,i S22,i

]
, Ti and appropriate dimension matrices Yi, Zi such that the following conditions hold:

A1. (i) For i ∈ Su,
Ω1,i > 0. (5)

(ii) For i ∈ Ss,
Ω2,i < 0 and Ω3,i ≥ 0. (6)

A2. Assume that, for any t0 the switching law guarantees that

inf
t≥t0

T−(t0, t)
T+(t0, t)

≥
λ+ + λ∗

λ− − λ∗
(7)

where λ∗ ∈ (0, λ−). Furthermore, there exists 0 < ν < λ∗ such that
(i) If the subsystem i ∈ Su is activated in time intervals [tik−1, tik

), k = 1, 2, ...,
then

ln ψ− ν(tik
− tik−1) ≤ 0, k = 1, 2, ..., l(t). (8)

(ii) If the subsystem j ∈ Ss is activated in time intervals [tjk−1, tjk
), k = 1, 2, ...,

then
ln ψ + ζ jhM − ν(tjk

− tjk−1) ≤ 0, k = 1, 2, ..., N(t)− 1. (9)

Proof. Consider the following Lyapunov functional:

Vi(xt) = V1,i(x(t)) + V2,i(xt) + V3,i(xt) + V4,i(xt) + V5,i(xt)

where xt ∈ C([−hM, 0], Rn), xt(s) = x(t + s), s ∈ [−hM, 0] and
V1,i(x(t)) = xT(t)Pix(t),

V2,i(xt) =
∫ t

t−h(t)
e2β(s−t)xT(s)Qix(s)ds,

V3,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)xT(ξ)Rix(ξ)dξds,

V4,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)

[
x(ξ)

x(ξ − h(ξ))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(ξ)

x(ξ − h(ξ))

]
dξds,

V5,i(xt) =
∫ 0

−h(t)

∫ t

t+s
ẋT(ξ)Tiẋ(ξ)dξds.

It is easy to verify that

α1 ‖ x(t) ‖2≤ Vi(xt) ≤ α2 ‖ xt ‖
2, t ≥ 0. (10)
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We have

V1,i(x(t)) ≤ max
i
{λM(Pi)} ‖ x(t) ‖2

=
max

i
{λM(Pi)}

min
j
{λm(Pj)}

min
j
{λm(Pj)}xT(t)x(t)

≤
max

i
{λM(Pi)}

min
j
{λm(Pj)}

xT(t)Pjx(t)

=
max

i
{λM(Pi)}

min
j
{λm(Pj)}

V1,j(x(t)).

Let ψ =
max

i
{λM(Pi)}

min
j
{λm(Pj)}

. Obviously ψ ≥ 1 and we get

Vi(xt) ≤ ψVj(xt), ∀i, j ∈ S. (11)

Taking derivative of V1,i(x(t)) along trajectories of any subsystem ith we have

V̇1,i(x(t)) = ẋT(t)Pix(t) + xT(t)Piẋ(t)

=
N

∑
i=1

λi(t)[x
T(t)AT

i Pix(t) + xT(t− h(t))BT
i Pix(t)

+xT(t)Pi Aix(t) + xT(t)PiBix(t− h(t))].

Next, by taking derivative of V2,i(xt), V3,i(xt), V4,i(xt) and V5,i(xt), respectively, along the
system trajectories yields

V̇2,i(xt) = xT(t)Qix(t)− (1− ḣ(t))e−2βh(t)xT(t− h(t))Qix(t− h(t))− 2βV2,i(xt)

≤ xT(t)Qix(t)− (1− μ)e−2βh(t)xT(t− h(t))Qix(t− h(t))− 2βV2,i(xt),

V̇3,i(xt) =
∫ 0

−h(t)
[xT(t)Rix(t)− e2βsxT(t + s)Rix(t + s)]ds− 2βV3,i(xt)

≤ hMxT(t)Rix(t)−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds− 2βV3,i(xt),
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V̇4,i(xt) =
∫ 0

−h(t)
[

[
x(ξ)

x(ξ − h(ξ))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(ξ)

x(ξ − h(ξ))

]

−e2βs
[

x(t + s)
x(t + s− h(t + s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(t + s)

x(t + s− h(t + s))

]
]ds

−e2βs
[

x(t + s)
x(t + s− h(t + s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(t + s)

x(t + s− h(t + s))

]
]ds

−2βV4,i(xt)

≤ hM

[
x(t)

x(t− h(t))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(t)

x(t− h(t))

]

−
∫ t

t−h(t)
e2β(s−t)

[
x(s)

x(s− h(s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(s)

x(s− h(s))

]
ds

−e2βs
[

x(t + s)
x(t + s− h(t + s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(t + s)

x(t + s− h(t + s))

]
]ds

−2βV4,i(xt)

≤ hM

[
x(t)

x(t− h(t))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(t)

x(t− h(t))

]

−
∫ t

t−h(t)
e2β(s−t)

[
x(s)

x(s− h(s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(s)

x(s− h(s))

]
ds

−2βV4,i(xt),

V̇5,i(xt) =
∫ 0

−h(t)
[ẋT(t)Tiẋ(t)− ẋT(t + s)Tiẋ(t + s)]ds

≤ hMẋT(t)Tiẋ(t)−
∫ t

t−h(t)
ẋT(s)Tiẋ(s)ds

= hMẋT(t)Tiẋ(t)−
1
2

∫ t

t−h(t)
ẋT(s)Tiẋ(s)ds−

1
2

∫ t

t−h(t)
ẋT(s)Tiẋ(s)ds.

Then, the derivative of Vi(xt) along the any trajectory of solution of (1) is estimated by

V̇i(xt) ≤
N

∑
i=1

λi(t)
[

x(t)
x(t− h(t))

]T

Ω�

1,i

[
x(t)

x(t− h(t))

]
− 2βV2,i(xt)

−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds− 2βV3,i(xt)

−
∫ t

t−h(t)
e2β(s−t)

[
x(s)

x(s− h(s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(s)

x(s− h(s))

]
ds

−2βV4,i(xt) + hMẋ(t)TTiẋ(t)−
1
2

∫ t

t−h(t)
ẋT(s)Tiẋ(s)ds

−
1
2

∫ t

t−h(t)
ẋT(s)Tiẋ(s)ds, (12)
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where

Ω�

1,i =

[
AT

i Pi + Pi Ai + Qi + hMRi + hMS11,i BT
i Pi + hMS12,i

∗ −(1− μ)e−2βhM Qi + hMS22,i

]

Since ∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)xT(ξ)Rix(ξ)dξds ≤

∫ 0

−h(t)

∫ t

t−h(t)
e2β(ξ−t)xT(ξ)Rix(ξ)dξds

≤ hM

∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds,

we have

−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds ≤ −

1
hM

∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)xT(ξ)Rix(ξ)dξds

= −
1

hM
V3,i(xt). (13)

Similarly, we have

−
∫ t

t−h(t)
e2β(s−t)

[
x(s)

x(s− h(s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(s)

x(s− h(s))

]
ds ≤ −

1
hM

V4,i(xt), (14)

and

−
1
2

∫ t

t−h(t)
ẋ(s)Tiẋ(s)ds ≤ −

1
2hM

V5,i(xt). (15)

From (12), (13), (14) and (15), we obtain

V̇i(xt) ≤
N

∑
i=1

λi(t)
[

x(t)
x(t− h(t))

]T

Ω1,i

[
x(t)

x(t− h(t))

]
− 2βV2,i(xt)

−(2β +
1

hM
)(V3,i(xt) + V4,i(xt))−

1
2hM

V5,i(xt)

−
1
2

∫ t

t−h(t)
ẋ(s)Tiẋ(s)ds. (16)

For i ∈ Su, we have

V̇i(xt) ≤
N

∑
i=1

λi(t)
[

x(t)
x(t− h(t))

]T

Ω1,i

[
x(t)

x(t− h(t))

]
.

By (5), (16) and Lemma 2.2, there exists ξi > 0 such that

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0 ) ‖ eξ i(t−t0), t ≥ t0. (17)
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where ξi =
2 max

i
{λM(Ω1,i)}

min
i
{λm(Pi)}

.

For i ∈ Ss, we have that when Xi =

[
X11,i X12,i
∗ X22,i

]
≥ 0, the following holds:

hM

[
x(t)

x(t− h(t))

]T

Xi

[
x(t)

x(t− h(t))

]

−
∫ t

t−h(t)
e2β(s−t)

[
x(t)

x(t− h(t))

]T

Xi

[
x(t)

x(t− h(t))

]
ds ≥ 0. (18)

Using the Newton-Leibniz formula, (Wu et al., 2004), we can write

x(t− h(t)) = x(t)−
∫ t

t−h(t)
ẋ(s)ds.

Then, for any appropriate dimension matrices Yi and Zi, we have

2[xT(t)Yi + xT(t− h(t))Zi][x(t)−
∫ t

t−h(t)
ẋ(s)ds− x(t− h(t))] = 0.

It follows that

2xT(t)Yix(t)− 2xT(t)Yi

∫ t

t−h(t)
ẋ(s)ds− 2xT(t)Yix(t− h(t)) + 2xT(t− h(t))Zix(t)

−2xT(t− h(t))Zi

∫ t

t−h(t)
ẋ(s)ds− 2xT(t− h(t))Zix(t− h(t)) = 0. (19)

From (16) with (18) and (19), we have

V̇i(xt) ≤
N

∑
i=1

λi(t)
[

x(t)
x(t− h(t))

]T

Ω2,i

[
x(t)

x(t− h(t))

]
− 2βV2,i(xt)

−(2β +
1

hM
)(V3,i(xt) + V4,i(xt))−

1
2hM

V5,i(xt)

−
∫ t

t−h(t)

⎡
⎣ x(t)

x(t− h(t))
ẋ(s)

⎤
⎦

T

Ω3,i

⎡
⎣ x(t)

x(t− h(t))
ẋ(s)

⎤
⎦ ds. (20)

By (6), (20) and Lemma 2.3, there exist ζ i > 0 such that

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0 ) ‖ e−ζ i(t−t0), t ≥ t0. (21)

where ζi = min{
min

i
{λm(−Ω2,i)}

max
i
{λM(Pi)}

, 2β,
1

2hM
}.

Let N(t) denotes the number of times the system is switched on [t0, t) such that lim
t→+∞

N(t) =

+∞. Suppose that σ(t0) = i0, σ(t1) = i1, ... and σ(t) = i.
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Let l(t) denotes the number of times the unstable subsystems are activated on [t0, t) and
N(t)− l(t) denotes the number of times the stable subsystems are activated on [t0, t). Suppose
that t0 < t1 < t2 < ... and lim

n→+∞
tn = +∞.

From (11), (17) and (21), suppose that the j th subsystem of unstable mode is activated on the
interval [tl , tl+1),
- if the i th subsystem of unstable mode is activated on the interval [tl−1, tl), then

Vj(xt) ≤ ψ ‖ Vi(xtl−1) ‖ eξ i(tl−tl−1)eξ j(t−tl), t ∈ [tl, tl+1).
- if the i th subsystem of stable mode is activated on the interval [tl−1, tl), then

Vj(xt) ≤ ψ ‖ Vi(xtl−1) ‖ e−ζ i(tl−tl−1)eξ j(t−tl), t ∈ [tl , tl+1).
Suppose that the j th subsystem of stable mode is activated on the interval [tl , tl+1),
- if the i th subsystem of unstable mode is activated on the interval [tl−1, tl), then

Vj(xt) ≤ ψ ‖ Vi(xtl−1) ‖ eξ i(tl−tl−1)e−ζ j(t−tl), t ∈ [tl , tl+1).
- if the i th subsystem of stable mode is activated on the interval [tl−1, tl), then

Vj(xt) ≤ ψ ‖ Vi(xtl−1) ‖ e−ζ i(tl−tl−1)e−ζ j(t−tl), t ∈ [tl, tl+1).
In general, we get

Vi(xt) ≤
l(t)

∏
m=1

ψeξ im (tm−tm−1) ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM e−ζ in (tn−tn−1)× ‖ Vi0(xt0 ) ‖ e−ζ i(t−tN(t)−1)

≤
l(t)

∏
m=1

ψeλ+(tm−tm−1) ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM e−λ−(tn−tn−1)× ‖ Vi0 (xt0 ) ‖ e−λ−(t−tN(t)−1),

t ≥ t0. Using (7), we have

Vi(xt) ≤
l(t)

∏
m=1

ψ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM× ‖ Vi0(xt0 ) ‖ e−λ∗(t−t0), t ≥ t0.

By (8) and (9), we get
Vi(xt) ≤‖ Vi0 (xt0 ) ‖ e−(λ∗−ν)(t−t0), t ≥ t0.

Thus, by (10), we have

‖ x(t) ‖≤
√

α2

α1
‖ xt0 ‖ e−

1
2 (λ∗−ν)(t−t0), t ≥ t0,

which concludes the proof of the Theorem 3.1. �

3.2 Robust exponential stability of linear switched system with time-varying delay
In this section, we give conditions for robust exponential stability of the zero solution of
system (1) without nonlinear perturbation, namely fi(t, x(t), x(t− h(t))) = 0. The following
is the main result.
Theorem 3.2 The zero solution of system (1) with fi(t, x(t), x(t− h(t))) = 0 is robustly exponentially

stable if there exist positive real numbers ε1i, ε2i, positive definite matrices Pi, Qi, Ri and
[

S11,i S12,i
ST

12,i S22,i

]
such that the following conditions hold:
A1. (i) For i ∈ Su,

Ξi > 0. (22)
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(ii) For i ∈ Ss,
Ξi < 0. (23)

A2. Assume that, for any t0 the switching law guarantees that

inf
t≥t0

T−(t0, t)
T+(t0, t)

≥
λ+ + λ∗

λ− − λ∗
(24)

where λ∗ ∈ (0, λ−). Furthermore, there exists 0 < ν < λ∗ such that
(i) If the subsystem i ∈ Su is activated in time intervals [tik−1, tik

), k = 1, 2, ...,
then

ln ψ− ν(tik
− tik−1) ≤ 0, k = 1, 2, ..., l(t). (25)

(ii) If the subsystem j ∈ Ss is activated in time intervals [tjk−1, tjk
), k = 1, 2, ...,

then
ln ψ + ζ jhM − ν(tjk

− tjk−1) ≤ 0, k = 1, 2, ..., N(t)− 1. (26)

Proof. Consider the following Lyapunov functional:

Vi(xt) = V1,i(x(t)) + V2,i(xt) + V3,i(xt) + V4,i(xt)

where xt ∈ C([−hM, 0], Rn), xt(s) = x(t + s), s ∈ [−hM, 0], and V1,i(x(t)) = xT(t)Pix(t),

V2,i(xt) =
∫ t

t−h(t)
e2β(s−t)xT(s)Qix(s)ds,

V3,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)xT(ξ)Rix(ξ)dξds,

V4,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)

[
x(ξ)

x(ξ − h(ξ))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(ξ)

x(ξ − h(ξ))

]
dξds.

It is easy to verify that

α1 ‖ x(t) ‖2≤ Vi(xt) ≤ α3 ‖ xt ‖
2, t ≥ 0. (27)

Similar to (11), we have
Vi(xt) ≤ ψVj(xt), ∀i, j ∈ S. (28)

Taking derivative of V1,i(x(t)) along trajectories of any subsystem ith, we have

V̇1,i(x(t)) = ẋT(t)Pix(t) + xT(t)Piẋ(t)

=
N

∑
i=1

λi(t)[x
T(t)AT

i Pix(t) + xT(t)ΔAT
i (t)Pix(t) + xT(t− h(t))BT

i Pix(t)

+xT(t− h(t))ΔBT
i (t)Pix(t) + xT(t)Pi Aix(t) + xT(t)PiΔAi(t)x(t)

+xT(t)PiBix(t− h(t)) + xT(t)PiΔBi(t)x(t− h(t))].

Applying Lemma 2.1 and from (2) and (3), we get

2xT(t)ΔAT
i (t)Pix(t) ≤ ε−1

1i xT(t)HT
1i H1ix(t) + ε1ix

T(t)PiE
T
1iE1iPix(t),

2xT(t− h(t))ΔBT
i (t)Pix(t) ≤ ε−1

2i xT(t− h(t))HT
2i H2ix(t− h(t)) + ε2ix

T(t)PiE
T
2iE2iPix(t).
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Next, by taking derivative of V2,i(xt), V3,i(xt) and V4,i(xt), respectively, along the system
trajectories yields

V̇2,i(xt) ≤ xT(t)Qix(t)− (1− μ)e−2βh(t)xT(t− h(t))Qix(t− h(t))− 2βV2,i(xt),

V̇3,i(xt) ≤ hMxT(t)Rix(t)−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds− 2βV3,i(xt),

V̇4,i(xt) ≤ hM

[
x(t)

x(t− h(t))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(t)

x(t− h(t))

]

−
∫ t

t−h(t)
e2β(s−t)

[
x(s)

x(s− h(s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(s)

x(s− h(s))

]
ds

−2βV4,i(xt).

Therefore, the estimation of derivative of Vi(xt) along any trajectory of solution of (1) is given
by

V̇i(xt) ≤
N

∑
i=1

λi(t)
[

x(t)
x(t− h(t))

]T

Ξi

[
x(t)

x(t− h(t))

]
− 2βV2,i(xt)

−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds− 2βV3,i(xt)

−
∫ t

t−h(t)
e2β(s−t)

[
x(s)

x(s− h(s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(s)

x(s− h(s))

]
ds

−2βV4,i(xt). (29)

For i ∈ Su, we have

V̇i(xt) ≤
N

∑
i=1

λi(t)
[

x(t)
x(t− h(t))

]T

Ξi

[
x(t)

x(t− h(t))

]
.

Similar to Theorem 3.1, from (22) and (29), we get

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0 ) ‖ eξ i(t−t0), t ≥ t0, (30)

where ξi =
2 max

i
{λM(Ξi)}

min
i
{λm(Pi)}

.

For i ∈ Ss, from (13), (14) and (29), we have

V̇i(xt) ≤
N

∑
i=1

λi(t)
[

x(t)
x(t− h(t))

]T

Ξi

[
x(t)

x(t− h(t))

]
− 2βV2,i(xt)

−(2β +
1

hM
)(V3,i(xt) + V4,i(xt)) (31)
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Similar to Theorem 3.1, from (23) and (31), we get

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0 ) ‖ e−ζ i(t−t0), t ≥ t0. (32)

where ζi = min{
min

i
{λm(−Ξi)}

max
i
{λM(Pi)}

, 2β}.

In general, from (28), (30) and (32), with the same argument as in the proof of Theorem 3.1, we
get

Vi(xt) ≤
l(t)

∏
m=1

ψeλ+(tm−tm−1) ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM e−λ−(tn−tn−1)× ‖ Vi0 (xt0 ) ‖ e−λ−(t−tN(t)−1),

t ≥ t0. Using (24), we have

Vi(xt) ≤
l(t)

∏
m=1

ψ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM× ‖ Vi0(xt0 ) ‖ e−λ∗(t−t0), t ≥ t0.

By (25) and (26), we get

Vi(xt) ≤‖ Vi0 (xt0 ) ‖ e−(λ∗−ν)(t−t0), t ≥ t0.

Thus, by (27), we have

‖ x(t) ‖≤
√

α3

α1
‖ xt0 ‖ e−

1
2 (λ∗−ν)(t−t0), t ≥ t0,

which concludes the proof of the Theorem 3.2. �

3.3 Robust exponential stability of switched system with time-varying delay and nonlinear
perturbation

In this section, we deal with the problem for robust exponential stability of the zero solution
of system (1).

Theorem 3.3 The zero solution of system (1) is robust exponentially stable if there exist positive

real numbers ε3i, ε4i , ε5i, positive definite matrices Pi, Qi, Ri and
[

S11,i S12,i
ST

12,i S22,i

]
such that the following

conditions hold:

A1. (i) For i ∈ Su,
Θi > 0. (33)

(ii) For i ∈ Ss,
Θi < 0. (34)

A2. Assume that, for any t0 the switching law guarantees that

inf
t≥t0

T−(t0, t)
T+(t0, t)

≥
λ+ + λ∗

λ− − λ∗
(35)
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where λ∗ ∈ (0, λ−). Furthermore, there exists 0 < ν < λ∗ such that
(i) If the subsystem i ∈ Su is activated in time intervals [tik−1, tik

), k = 1, 2, ..., then

ln ψ− ν(tik
− tik−1) ≤ 0, k = 1, 2, ..., l(t). (36)

(ii) If the subsystem j ∈ Ss is activated in time intervals [tjk−1, tjk
), k = 1, 2, ..., then

ln ψ + ζ jhM − ν(tjk
− tjk−1) ≤ 0, k = 1, 2, ..., N(t)− 1. (37)

Proof. Consider the following Lyapunov functional:

Vi(xt) = V1,i(x(t)) + V2,i(xt) + V3,i(xt) + V4,i(xt)

where xt ∈ C([−hM, 0], Rn), xt(s) = x(t + s), s ∈ [−hM, 0] and
V1,i(x(t)) = xT(t)Pix(t),

V2,i(xt) =
∫ t

t−h(t)
e2β(s−t)xT(s)Qix(s)ds,

V3,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)xT(ξ)Rix(ξ)dξds,

V4,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)

[
x(ξ)

x(ξ − h(ξ))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(ξ)

x(ξ − h(ξ))

]
dξds.

It is easy to verify that

α1 ‖ x(t) ‖2≤ Vi(xt) ≤ α3 ‖ xt ‖
2, t ≥ 0. (38)

Similar to (11), we have
Vi(xt) ≤ ψVj(xt), ∀i, j ∈ S. (39)

Taking derivative of V1,i(x(t)) along trajectories of any subsystem ith we have

V̇1,i(x(t)) = ẋT(t)Pix(t) + xT(t)Piẋ(t)

=
N

∑
i=1

λi(t)[x
T(t)AT

i Pix(t) + xT(t)ΔAT
i (t)Pix(t) + xT(t− h(t))BT

i Pix(t)

+xT(t− h(t))ΔBT
i (t)Pix(t) + f T

i (t, x(t), x(t− h(t)))Pix(t) + xT(t)Pi Aix(t)

+xT(t)PiΔAi(t)x(t) + xT(t)PiBix(t− h(t)) + xT(t)PiΔBi(t)x(t− h(t))

+xT(t)Pi fi(t, x(t), x(t− h(t)))].

From lemma 2.1, we have

2 f T
i (t, x(t), x(t− h(t)))Pix(t) ≤ f T

i (t, x(t), x(t− h(t)))W−1
i fi(t, x(t), x(t− h(t)))

+xT(t)PiWiPix(t).

By choosing Wi = ε3i Ii and from (4), we have

2 f T
i (t, x(t), x(t− h(t)))Pix(t) ≤ ε−1

3i f T
i (t, x(t), x(t− h(t))) fi(t, x(t), x(t− h(t)))

+ε3ix
T(t)PiPix(t)

≤ ε−1
3i [γix

T(t)x(t) + δix
T(t− h(t))x(t− h(t))]

+ε3ix
T(t)PiPix(t).
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Applying Lemma 2.1 and from (2) and (3), we get

2xT(t)ΔAT
i (t)Pix(t) ≤ ε−1

4i xT(t)HT
4i H4ix(t) + ε4ix

T(t)PiE
T
4iE4iPix(t),

2xT(t− h(t))ΔBT
i (t)Pix(t) ≤ ε−1

5i xT(t− h(t))HT
5i H5ix(t− h(t)) + ε5ix

T(t)PiE
T
5iE5iPix(t).

Next, by taking derivative of V2,i(xt), V3,i(xt) and V4,i(xt), respectively, along the system
trajectories yields

V̇2,i(xt) ≤ xT(t)Qix(t)− (1− μ)e−2βh(t)xT(t− h(t))Qix(t− h(t))− 2βV2,i(xt),

V̇3,i(xt) ≤ hMxT(t)Rix(t)−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds− 2βV3,i(xt),

V̇4,i(xt) ≤ hM

[
x(t)

x(t− h(t))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(t)

x(t− h(t))

]

−
∫ t

t−h(t)
e2β(s−t)

[
x(s)

x(s− h(s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(s)

x(s− h(s))

]
ds

−2βV4,i(xt).

Then, the derivative of Vi(xt) along any trajectory of solution of (1) is estimated by

V̇i(xt) ≤
N

∑
i=1

λi(t)
[

x(t)
x(t− h(t))

]T

Θi

[
x(t)

x(t− h(t))

]
− 2βV2,i(xt)

−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds− 2βV3,i(xt)

−
∫ t

t−h(t)
e2β(s−t)

[
x(s)

x(s− h(s))

]T [
S11,i S12,i
ST

12,i S22,i

] [
x(s)

x(s− h(s))

]
ds

−2βV4,i(xt). (40)

For i ∈ Su, it follows from (40) that

V̇i(xt) ≤
N

∑
i=1

λi(t)
[

x(t)
x(t− h(t))

]T

Θi

[
x(t)

x(t− h(t))

]
. (41)

Similar to Theorem 3.1, from (33) and (41), we get

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0 ) ‖ eξ i(t−t0), t ≥ t0. (42)

where ξi =
2 max

i
{λM(Θi)}

min
i
{λm(Pi)}

.
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For i ∈ Ss, from (13), (14) and (40), we have

V̇i(xt) ≤
N

∑
i=1

λi(t)
[

x(t)
x(t− h(t))

]T

Θi

[
x(t)

x(t− h(t))

]
− 2βV2,i(xt)

−(2β +
1

hM
)(V3,i(xt) + V4,i(xt)). (43)

Similar to Theorem 3.1, from (34) and (43), we get

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0 ) ‖ e−ζ i(t−t0), t ≥ t0. (44)

where ζi = min{
min

i
{λm(−Θi)}

max
i
{λM(Pi)}

, 2β}.

In general, from (39), (42) and (44), with the same argument as in the proof of Theorem 3.1, we
get

Vi(xt) ≤
l(t)

∏
m=1

ψeλ+(tm−tm−1) ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM e−λ−(tn−tn−1)× ‖ Vi0 (xt0 ) ‖ e−λ−(t−tN(t)−1),

t ≥ t0. Using (35), we have

Vi(xt) ≤
l(t)

∏
m=1

ψ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM× ‖ Vi0(xt0 ) ‖ e−λ∗(t−t0), t ≥ t0.

By (36) and (37), we get

Vi(xt) ≤‖ Vi0 (xt0 ) ‖ e−(λ∗−ν)(t−t0), t ≥ t0.

Thus, by (38), we have

‖ x(t) ‖≤
√

α3

α1
‖ xt0 ‖ e−

1
2 (λ∗−ν)(t−t0), t ≥ t0,

which concludes the proof of the Theorem 3.3. �

4. Numerical examples

Example 4.1 Consider linear switched system (1) with time-varying delay but without matrix
uncertainties and without nonlinear perturbations. Let N = 2, Su = {1}, Ss = {2}. Let
the delay function be h(t) = 0.51 sin2 t. We have hM = 0.51, μ = 1.02, λ(A1 + B1) =
0.0046,−0.0399, λ(A2) = −0.2156, 0.0007. Let β = 0.5.
Since one of the eigenvalues of A1 + B1 is negative and one of eigenvalues of A2 is positive,
we can’t use results in (Alan & Lib, 2008) to consider stability of switched system (1). By using
the LMI toolbox in Matlab, we have matrix solutions of (5) for unstable subsystems and (6) for
stable subsystems as the following:
For unstable subsystems, we get
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P1 =

[
41.6819 0.0001
0.0001 41.5691

]
, Q1 =

[
24.7813 −0.0002
−0.0002 24.7848

]
, R1 =

[
33.1027 −0.0001
−0.0001 33.1044

]
,

S11,1 =

[
33.1027 −0.0001
−0.0001 33.1044

]
, S12,1 =

[
−0.0372 −0.0023
−0.0023 0.7075

]
, S22,1 =

[
50.0412 0.0001
0.0001 50.0115

]
,

T1 =

[
41.7637 −0.0001
−0.0001 41.7920

]
.

For stable subsystems, we get

P2 =

[
71.8776 2.3932
2.3932 110.8889

]
, Q2 =

[
7.2590 −0.3265
−0.3265 0.8745

]
, R2 =

[
10.4001 −0.4667
−0.4667 1.2806

]
,

S11,2 =

[
12.7990 −0.4854
−0.4854 3.5031

]
, S12,2 =

[
−3.1787 0.0240
0.0240 −2.8307

]
, S22,2 =

[
4.6346 −0.0289
−0.0289 4.0835

]
,

T2 =

[
16.9964 0.0394
0.0394 17.7152

]
, X11,2 =

[
17.2639 −0.1536
−0.1536 14.2310

]
, X12,2 =

[
−9.6485 −0.1466
−0.1466 −12.5573

]
,

X22,2 =

[
16.9716 −0.1635
−0.1635 13.8095

]
, Y2 =

[
−3.4666 −0.1525
−0.1525 −6.3485

]
, Z2 =

[
6.8776 −0.0574
−0.0574 5.7924

]
.

By straight forward calculation, the growth rate is λ+ = ξ = 2.8291, the decay rate is λ− =
ζ = 0.0063, λ(Ω1,1) = 25.8187, 25.8188, 58.7463, 58.8011, λ(Ω2,2) = −10.1108,−3.7678,
− 2.0403,−0.7032 and λ(Ω3,2) = 1.4217, 4.2448, 5.4006, 9.1514, 29.3526, 30.0607. Thus, we may
take λ∗ = 0.0001 and ν = 0.00001. Thus, from inequality (7), we have T− ≥ 456.3226 T+. By
choosing T+ = 0.1, we get T− ≥ 45.63226. We choose the following switching rules:
(i) for t ∈ [0, 0.1) ∪ [50, 50.1) ∪ [100, 100.1) ∪ [150, 150.1) ∪ ..., subsystem i = 1 is activated.
(ii) for t ∈ [0.1, 50) ∪ [50.1, 100) ∪ [100.1, 150) ∪ [150.1, 200) ∪ ..., subsystem i = 2 is activated.
Then, by Theorem 3.1, the switching system (1) is exponentially stable. Moreover, the solution
x(t) of the system satisfies

‖ x(t) ‖≤ 11.8915e−0.000045t , t ∈ [0, ∞).

The trajectories of solution of switched system switching between the subsystems i = 1 and
i = 2 are shown in Figure 1, Figure 2 and Figure 3, respectively.
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Fig. 1. The trajectories of solution of linear switched system.

91Exponential Stability of Uncertain Switched System with Time-Varying Delay



0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time

x1
,x
2

x1
x2

Fig. 2. The trajectories of solution of subsystem i = 1.
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Fig. 3. The trajectories of solution of subsystem i = 2.

Example 4.2 Consider uncertain switched system (1) with time-varying delay and nonlinear
perturbation. Let N = 2, Su = {1}, Ss = {2} where

A1 =

[
0.1130 0.00013
0.00015 −0.0033

]
, B1 =

[
0.0002 0.0012
0.0014 −0.5002

]
,

A2 =

[
−5.5200 1.0002
1.0003 −6.5500

]
, B2 =

[
0.0245 0.0001
0.0001 0.0237

]
,

E1i = E2i =

[
0.2000 0.0000
0.0000 0.2000

]
, H1i = H2i =

[
0.1000 0.0000
0.0000 0.1000

]
, i = 1, 2,

F1i = F2i =

[
sin t 0

0 sin t

]
, i = 1, 2,
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f1(t, x(t), x(t− h(t))) =
[

0.1x1(t) sin(x1(t))
0.1x2(t− h(t)) cos(x2(t))

]
,

f2(t, x(t), x(t− h(t))) =
[

0.5x1(t) sin(x1(t))
0.5x2(t− h(t)) cos(x2(t))

]
.

From

‖ f1(t, x(t), x(t− h(t))) ‖2 = [0.1x1(t) sin(x1(t))]
2 + [0.1x2(t− h(t)) cos(x2(t))]

2

≤ 0.01x2
1(t) + 0.01x2

2(t− h(t))

≤ 0.01 ‖ x(t) ‖2 +0.01 ‖ x(t− h(t)) ‖2

≤ 0.01[‖ x(t) ‖ + ‖ x(t− h(t)) ‖]2,

we obtain
‖ f1(t, x(t), x(t− h(t))) ‖≤ 0.1 ‖ x(t) ‖ +0.1 ‖ x(t− h(t)) ‖ .

The delay function is chosen as h(t) = 0.25 sin2 t. From

‖ f2(t, x(t), x(t− h(t))) ‖2 = [0.5x1(t) sin(x1(t))]
2 + [0.5x2(t− h(t)) cos(x2(t))]2

≤ 0.25x2
1(t) + 0.25x2

2(t− h(t))

≤ 0.25 ‖ x(t) ‖2 +0.25 ‖ x(t− h(t)) ‖2

≤ 0.25[‖ x(t) ‖ + ‖ x(t− h(t)) ‖]2,

we obtain
‖ f2(t, x(t), x(t− h(t))) ‖≤ 0.5 ‖ x(t) ‖ +0.5 ‖ x(t− h(t)) ‖ .

We may take hM = 0.25, and from (4), we take γ1 = 0.1, δ1 = 0.1, γ2 = 0.5, δ2 = 0.5. Note that
λ(A1) = 0.11300016,−0.00330016. Let β = 0.5, μ = 0.5. Since one of the eigenvalues of A1 is
negative, we can’t use results in (Alan & Lib, 2008) to consider stability of switched system
(1). From Lemma 2.4 , we have the matrix solutions of (33) for unstable subsystems and of
(34) for stable subsystems by using the LMI toolbox in Matlab as the following:
For unstable subsystems, we get
ε31 = 0.8901, ε41 = 0.8901, ε51 = 0.8901,

P1 =

[
0.2745 −0.0000
−0.0000 0.2818

]
, Q1 =

[
0.4818 −0.0000
−0.0000 0.5097

]
, R1 =

[
0.8649 −0.0000
−0.0000 0.8729

]
,

S11,1 =

[
0.8649 −0.0000
−0.0000 0.8729

]
, S12,1 = 10−4 ×

[
−0.1291 −0.8517
−0.8517 0.1326

]
,

S22,1 =

[
1.0877 −0.0000
−0.0000 1.0902

]
.

For stable subsystems, we get
ε32 = 2.0180, ε42 = 2.0180, ε52 = 2.0180,

P2 =

[
0.2741 0.0407
0.0407 0.2323

]
, Q2 =

[
1.3330 −0.0069
−0.0069 1.3330

]
, R2 =

[
1.0210 −0.0002
−0.0002 1.0210

]
,

S11,2 =

[
1.0210 −0.0002
−0.0002 1.0210

]
, S12,2 =

[
−0.0016 −0.0002
−0.0002 −0.0016

]
,

S22,2 =

[
0.8236 −0.0006
−0.0006 0.8236

]
.

By straight forward calculation, the growth rate is λ+ = ξ = 8.5413, the decay
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rate is λ− = ζ = 0.1967, λ(Θ1) = 0.1976, 0.2079, 1.1443, 1.1723 and λ(Θ2) =
−0.7682,−0.6494,−0.0646,−0.0588. Thus, we may take λ∗ = 0.0001 and ν = 0.00001.
Thus, from inequality (35), we have T− ≥ 43.4456 T+. By choosing T+ = 0.1, we get
T− ≥ 4.34456. We choose the following switching rules:
(i) for t ∈ [0, 0.1) ∪ [5.0, 5.1) ∪ [10.0, 10.1) ∪ [15.0, 15.1) ∪ ..., system i = 1 is activated.
(ii) for t ∈ [0.1, 5.0) ∪ [5.1, 10.0) ∪ [10.1, 15.0) ∪ [15.1, 20.0) ∪ ..., system i = 2 is activated.
Then, by theorem 3.3.1, the switched system (1) is exponentially stable. Moreover, the solution
x(t) of the system satisfies

‖ x(t) ‖≤ 1.8770e−0.000045t , t ∈ [0, ∞).

The trajectories of solution of switched system switching between the subsystems i = 1 and
i = 2 are shown in Figure 4, Figure 5 and Figure 6, respectively.
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Fig. 4. The trajectories of solution of switched system with nonlinear perturbations

5. Conclusion

In this paper, we have studied the exponential stability of uncertain switched system with
time varying delay and nonlinear perturbations. We allow switched system to contain stable
and unstable subsystems. By using a new Lyapunov functional, we obtain the conditions for
robust exponential stability for switched system in terms of linear matrix inequalities (LMIs)
which may be solved by various algorithms. Numerical examples are given to illustrate the
effectiveness of our theoretical results.
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1. Introduction

Problems of stabilization and determining of stablility characteristics of steady-state regimes
are among the central in a control theory. Especial difficulties can be met when dealing with
the systems containing nonlinearities which are nonanalytic function of phase. Different
models describing nonlinear effects in real control systems (e.g. servomechanisms, such as
servo drives, autopilots, stabilizers etc.) are just concern this type, numerous works are
devoted to the analysis of problem of stable oscillations presence in such systems.
Time delays appear in control systems frequently and are important due to significant impact
on them. They affect substantially on stability properties and configuration of steady state
solutions. An accurate simultaneous account of nonlinear effects and time delays allows to
receive adequate models of real control systems.
This work contains some results concerning to a stability problem for periodic solutions
of nonlinear controlled system containing time delay. It corresponds further development
of an article: Kamachkin & Stepanov (2009). Main results obtained below might generally
be put in connection with classical results of V.I. Zubov’s control theory school (see Zubov
(1999), Zubov & Zubov (1996)) and based generally on work Zubov & Zubov (1996).
Note that all examples presented here are purely illustrative; some examples concerning to
similar systems can be found in Petrov & Gordeev (1979), Varigonda & Georgiou (2001).

2. Models under consideration

Consider a system
ẋ = Ax + cu(t − τ), (1)

here x = x(t) ∈ En, t ≥ t0 ≥ τ, A is real n × n matrix, c ∈ En, vector x(t), t ∈ [t0 − τ, t0], is
considered to be known. Quantity τ > 0 describes time delay of actuator or observer. Control
statement u is defined in the following way:

u(t − τ) = f (σ(t − τ)) , σ(t − τ) = γ′ x(t − τ), γ ∈ En , ‖γ‖ �= 0;

nonlinearity f can, for example, describe a nonideal two-position relay with hysteresis:

f (σ) =

{
m1, σ < l2,
m2, σ > l1,

(2)

On Stable Periodic Solutions of One Time Delay 
System Containing Some Nonideal Relay 

Nonlinearities 
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here l1 < l2, m1 < m2; and f (σ(t)) = f− = f (σ(t − 0)) if σ ∈ [l1; l2].
In addition to the nonlinearity (2) a three-position relay with hysteresis will be considered:

f (σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

{
|σ| ≤ l0,
|σ| ∈ (l0; l] , f− = 0;

m1,

{
σ ∈ [−l; −l0) , f− = m1,
σ < −l;

m2,

{
σ ∈ (l0; l] , f− = m2,
σ > l;

(3)

(here m1 < m < m2, 0 < l0 < l);
Suppose that hysteresis loops for the nonlinearities are walked around in counterclockwise
direction.

3. Stability of periodic solutions

Denote x(t − t0, x0, u) solution of the system (1) for unchanging control law u and initial
conditions (t0, x0).
Let the system (1), (3) has a periodic solution with four switching points ŝi such as

ŝ1 = x (T4, ŝ4, m2) , ŝ2 = x (T1, ŝ1, 0) , ŝ3 = x (T2, ŝ2, m1) , ŝ4 = x (T3, ŝ3, 0) .

Let si, i = 1, 4 are points of this solution (preceding to the corresponding ŝi) such as

γ′s1 = l0, γ′s2 = −l, γ′s3 = −l0, γ′s4 = l,

(let us name them Ťpre-switching pointsŤ, for example), and

ŝ1 = x (τ, s1, m2) , ŝ2 = x (τ, s2, 0) , ŝ3 = x (τ, s3, m1) , ŝ4 = x (τ, s4, 0) ,

or
ŝi+1 = x (Ti, ŝi, ui) , ŝi = x (τ, si, ui−1) ,

where
u1 = 0, u2 = m1, u3 = 0, u4 = m2

(hereafter suppose that indices are cyclic, i.e. for i = 1, m one have i + 1 = 1 if i = m and
i − 1 = m if i = 1).
Denote

vi = Asi+1 + cui, ki = γ′vi.

Theorem 1. Let ki �= 0 and ‖M‖ < 1, where

M =
1

∏
i=4

Mi, Mi =
(

I − k−1
i viγ

′) eATi ,

then the periodic solution under consideration is orbitally asymptotically stable.
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Proof As

si+1 = eA(Ti−τ) ŝi +
∫ Ti−τ

0
eA(Ti−τ−t)cui dt, ŝi = eAτsi +

∫ τ

0
eA(τ−t)cui−1 dt,

then the expression for si+1 can be written in a following form:

si+1 = eATi si + eATi

∫ τ

0
e−Atcui−1dt +

∫ Ti−τ

0
eA(Ti−τ−t)cuidt =

= eATi

(
si +

∫ τ

0
e−Atcui−1 dt +

∫ Ti

τ
e−Atcui dt

)
.

So,
(si+1)

′
si

= eATi , (si+1)
′
Ti

= Asi+1 + cui = vi,

and

d
(
γ′si+1

)
= 0 = γ′eATi dsi + γ′vidTi, dTi = −k−1

i γ′eATi dsi,

dsi+1 = eATi dsi − vik
−1
i γ′eATi dsi =

(
I − k−1

i viγ
′) eATi dsi = Midsi.

Denote dsk
1 the successive deviations of pre-switching points of some diverged solution

from s1. In such a case

dsk+1
1 =

1

∏
i=4

Midsk
1.

The system under consideration causes continuous contracting mapping of some
neighbourhood of the point s1 lying on hyperplane s = l0, to itself. Use of fixed point principle
(Nelepin (2002)) completes the proof. �

Example 1. Let τ = 0.3,

A =

⎛
⎝−0.1 −0.1 0

0.1 −0.1 0
0 0 0.01

⎞
⎠ , c =

⎛
⎝1

1
1

⎞
⎠ , γ =

⎛
⎝ 0.2

0
−1

⎞
⎠ ,

m1,2 = ∓1, l0 = 0.1, l = 0.5.

System (1), (3) has periodic solution with four switching points; the pre-switching points are:

s1 ≈
⎛
⎝ 0.468349

0.497302
−0.006307

⎞
⎠ , s2 ≈

⎛
⎝ 0.005176

−0.000633
0.501036

⎞
⎠ , s3 = −s1, s4 = −s2;

and

T1 ≈ 53.6354, T2 ≈ 0.7973, T3 = T1, T4 = T2.

As ‖M‖ ≈ 0.0078 < 1, then the periodic solution is orbitally asymptotically stable.
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Similarly, the system (1), (3) may have a periodic solution with a pair of switching points ŝ1,2
and a pair of pre-switching points s1,2 such as

ŝ1 = x (T2, ŝ2, m2) , ŝ2 = x (T1, ŝ1, 0) ,

ŝ1 = x (τ, s1, m2) , γ′s1 = l0, ŝ2 = x (τ, s2, 0) , γ′s1 = l.

for some positive constants T1,2. This solution will be orbitally asymptotically stable if

k1 = γ′v1,2 �= 0, where vi = Asj + cui, i �= j, u1 = 0, u2 = m2,

and
‖M‖ =

∥∥∥(
I − k−1

2 v2γ′
)

eAT2
(

I − k−1
1 v1γ′

)
eAT1

∥∥∥ < 1

(the proof is similar to the previous one).

Example 2. Let τ = 0.5,

A =

⎛
⎝−0.1 −0.2 0

0.2 −0.1 0
0 0 0.01

⎞
⎠ , c =

⎛
⎝1

1
1

⎞
⎠ , γ =

⎛
⎝ 0.1

0
−1

⎞
⎠ ,

l0 = 0.75, l = 1, m1,2 = ∓1.

Then the system (1), (3) has a periodic solution with pre-switching points

s1 =

⎛
⎝ 0.2727

0.2886
−0.7227

⎞
⎠ , s2 =

⎛
⎝ 0

0
−1

⎞
⎠ , T1 = 149.6021, T2 = 0.7847,

‖M‖ ≈ 0.9286 < 1,

and the solution is orbitally asymptotically stable.

4. Some extensions (bilinear system, multiple control etc.)

Consider a bilinear system
ẋ = Ax + (Cx + c) u(t − τ), (4)

In case of piecewise constant nonlinearity it is easy to obtain sufficient conditions for orbital
asymptotical stability of periodic solutions of this system.
Denote xi(t − t0, x0), i = 1, 4 solution of the system

ẋ = Aix + ci,

where (t0, x0) are initial conditions and

A1 = A3 = A, A2 = A + Cm1, A4 = A + Cm2, c1 = c3 = 0, c2 = cm1, c4 = cm2.

Lef the control u is given by (3) and the system (4), (3) has a periodic solution with four control
switching points (see the Theorem 1) ŝi and "pre-switching" points si such as

ŝi+1 = xi (Ti, ŝi) , γ′s1 = l0, γ′s2 = −l, γ′s3 = −l0, γ′s4 = l.

Denote
vi = Aisi+1 + ci, ki = γ′vi, i = 1, 4.
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Theorem 2. If ki �= 0 and

‖M‖ =

∥∥∥∥∥
1

∏
i=4

(
I − k−1

i viγ
′
)

eAiTi+(Ai−1−Ai)τ

∥∥∥∥∥ < 1,

then the periodic solution under consideration is orbitally asymptotically stable.

Proof As

si+1 = xi (Ti − τ, ŝi) = xi (Ti − τ, xi−1 (τ, si)) =

= eAi(Ti−τ)
(

eAi−1τsi +
∫ τ

0
eAi−1(τ−t)ci−1dt

)
+

∫ Ti−τ

0
eAi(Ti−τ−t)cidt =

= eAiTi+(Ai−1−Ai)τsi + eAi(Ti−τ)
∫ τ

0
eAi−1(τ−t)ci−1dt + +

∫ Ti−τ

0
eAi(Ti−τ−t)cidt,

then

(si+1)
′
si

= eAiTi+(Ai−1−Ai)τ, (si+1)
′
Ti

= Aisi+1 + ci.

So, as d (γ′si+1) = 0,

γ′eAiTi+(Ai−1−Ai)τdsi = −kidTi, dsi+1 =
(

I − k−1
i viγ

′) eAiTi+(Ai−1−Ai)τdsi,

and dsk+1
1 = Mdsk

1. Use of fixed point principle completes the proof. �

Example 3. Let, for example, τ = 0.3,

A =

⎛
⎝−0.1 −0.05 0

0.1 −0.05 0
0 0 0.01

⎞
⎠ , C =

⎛
⎝ 0 0.05 0

0.05 −0.1 0.05
0 −0.05 0

⎞
⎠ , c =

⎛
⎝1

1
1

⎞
⎠ ,

γ′ =
(−0.2 0.5 −1

)
, l0 = 0.1, l = 0.5, m1,2 = ∓1.

In such a case the system (4), (3) has periodic solution with pre-switching points

s1 ≈
⎛
⎝ 0.6819

0.5383
0.0328

⎞
⎠ , s2 ≈

⎛
⎝−0.0534

−0.0073
0.5070

⎞
⎠ , s3 ≈

⎛
⎝−0.6096

−0.6396
−0.0979

⎞
⎠ , s4 ≈

⎛
⎝ 0.1127

−0.0664
−0.5557

⎞
⎠ ,

T1 ≈ 42.2723, T2 ≈ 0.8977, T3 ≈ 33.5405, T4 ≈ 0.8969.

One can verify that ki �= 0, and
‖M‖ ≈ 0.8223 < 1.

So, the solution under consideration is orbitally asymptotically stable.

Note that if matrices A1,2 = A + Cm1,2 are Hurwitz, and

−γ′A−1
2 cm2 < l1, −γ′A−1

1 cm1 > l2,

then the system (4), (2) has at least one periodic solution.
By the analogy with the system (1), a system with multiple controls can be observed:

ẋ = Ax + c1u1 (σ1(t − τ1)) + c2u2 (σ2(t − τ2)) . (5)
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Suppose for simplicity that ui are simple hysteresis nonlinearities given by (2):

ui(σ) = u(σ) =
{

m1, σi < l2,
m2, σi > l1, σi = γ′

ix, i = 1, 2.

Denote x (t − t0, x0, u1, u2) solution of the system (5) for unchanging control laws u1,2 and
initial conditions (t0, x0). Let the system has periodic solution with four switching (ŝi) and
pre-switching (si) points such as

ŝ1 = x(T4, ŝ4, m2, m2), ŝ2 = x(T1, ŝ1, m1, m2), ŝ3 = x(T2, ŝ2, m1, m1), ŝ4 = x(T3, ŝ3, m2, m1),

ŝ1 = x(τ, s1, m2, m2), ŝ2 = x(τ, s2, m1, m2), ŝ3 = x(τ, s3, m1, m1), ŝ4 = x(τ, s4, m2, m1),

γ′
1s1 = −l1, γ′

2s2 = −l2, γ′
1s3 = l1, γ′

2s4 = l2.

Denote

p1 = c1m1 + c2m2, p2 = c1m1 + c2m1, p3 = c1m2 + c2m1, p4 = c1m2 + c2m2,

vi = Asi+1 + pi, i = 1, 4, k1 = γ′
2v1, k2 = γ′

1v2, k3 = γ′
2v3, k4 = γ′

1v4,

M1 =
(

I − k−1
1 v1γ′

2

)
eAT1 , M2 =

(
I − k−1

2 v2γ′
1

)
eAT2 ,

M3 =
(

I − k−1
3 v3γ′

2

)
eAT3 , M4 =

(
I − k−1

4 v4γ′
1

)
eAT4 .

It is easy to verify that the solution under consideration is orbitally asymptotically stable if
ki �= 0 and ∥∥∥∥∥

1

∏
i=4

Mi

∥∥∥∥∥ < 1.

Example 4. Consider a trivial case:

A =
(

λ1 0
0 λ2

)
, c1 =

(
1
0

)
, c2 =

(
0
1

)
, γ1 =

(
α1
0

)
, γ2 =

(
0
α2

)
.

So the system can be rewritten as a pair of independent equations{
ẋ1 = λ1x1 + u (α1x(t − τ1)) ,
ẋ2 = λ2x2 + u (α2x(t − τ2)) ;

or {
σ̇1 = λ1σ1 + α1u (σ1(t − τ1)) ,
σ̇2 = λ2σ2 + α2u (σ2(t − τ2)) .

Let, for example, λ1 > 0, λ2 < 0, l1 = −l2 = −l, m1 = −m2 = −m, τ1 = τ2 = τ. Denote

l̂i = eλiτ l − αiλ
−1
i

(
eλiτ − 1

)
m, i = 1, 2.

Between switchings σ looks as follows:

σi(t) = eλitσi(0) + αiλ
−1
i

(
eλit − 1

)
u, i = 1, 2.

102 Time-Delay Systems



Suppose t1 is a positive constant such as

σ1(0) = −l̂1, σ1(0.5t1) = l̂1, u = −m;

i.e.
α1m
λ1

− l̂1 =
(

α1m
λ1

+ l̂1

)
e0.5λ1t1 , t1 =

2
λ1

ln
α1m − λ1 l̂1
α1m + λ1 l̂1

.

Similarly,

t2 =
2

λ2
ln

α2m − λ2 l̂2
α2m + λ2 l̂2

.

If ti are commensurable quantities (i.e. t1/t2 is rational number) then the system has a periodic solution
with the period T = LCM (t1, t2).
This example also demonstrates that there can exist an almost periodic solution of the system (5) (as a
superposition of two periodic solutions with incommensurable periods) if t1/t2 ∈ I .
Let, for example,

τ = 0.1, λ1 = −λ2 = λ = 0.1, l = m = 1.

Let us choose parameters α1,2 in such a way that t1 = t2. It is easy to verify that the latest equality
holds true if

α1 − λl̂1
α1 + λl̂1

=
α2 − λl̂2
α2 + λl̂2

, or
α1
α2

=
l̂1
l̂2

So,

α2 =
α1λl

(λl − α1m) e2λτ + 2α1meλτ − α1m
.

Let α1 = −1, then
α2 ≈ −0.979229,

then we can calculate l̂1,2:
l̂1 ≈ 1.110552, l̂2 ≈ 1.087485.

And, finally,
t1 = t2 ≈ 4.460606.

The system under consideration has a T-periodic solution, T = ti. Let s′1 =
(
1 0

)
, then

s′2 ≈ (
0.19809 1.02122

)
, s3 = −s1, s4 = −s4,

T1 = T3 ≈ 1.07715, T2 = T4 ≈ 1.15315;

and

dsk+1
1 = Mdsk

1, M =
(

0 0
1.1362... 1

)
.

So, as s1,1 = 1, then ds1,1 = 0,
dsk+1

1,2 = dsk
1,2,

and the periodic solution under consideration cannot be asymptotically stable (of course this fact can be
established from other general considerations).
It is obvious that the system under consideration may have periodic solutions with greater amount of
switching points (depending of LCM (t1, t2) value).

Similar computations can be observed in case of nonlinearity (3).
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5. Stability in case of multiple delays

In more general case the system under consideration can also contain several nonlinearities or
several positive delays τi (i = 1, k) in control loop:

ẋ(t) = Ax(t) + c f

(
k

∑
i=1

γ′
i x(t − τi)

)
, γi ∈ En, ‖γi‖ �= 0. (6)

Let, for example, k = 2, τ1 = 0, τ2 = τ, denote γ̂ = γ1, γ = γ2, i.e.

ẋ(t) = Ax(t) + c f (σ̂(t) + σ(t − τ)) , σ̂ = γ̂′x, σ = γ′x. (7)

Consider one simple particular case. Let f is given by the (2) and the system (7), (2) has a
periodic solution with two switching points ŝ1, 2 such as

ŝ1 = x(T2, ŝ2, m2), ŝ2 = x(T1, ŝ1, m1),

γ̂′ ŝ1 + γ′s1 = l1, γ̂′ ŝ2 + γ′s2 = l2.

Here
ŝ2 = eAτs2 +

∫ τ

0
eA(τ−t)cm1dt, ŝ1 = eAτs1 +

∫ τ

0
eA(τ−t)cm2dt.

Denote

Γ =
(

eAτ
)′

γ̂ + γ, l̂1 = l1 − γ̂′
∫ τ

0
eA(τ−t)cm2dt, l̂2 = l2 − γ̂′

∫ τ

0
eA(τ−t)cm1dt.

then
Γ′s1 = l̂1, Γ′s2 = l̂2.

Theorem 3. Let

v1 = As2 + cm1, v2 = As1 + cm2, k1, 2 = Γ′v1, 2 �= 0,

and ∥∥∥(
I − k−1

2 v2Γ′) eAT2
(

I − k−1
1 v1Γ′) eAT1

∥∥∥ < 1,

then the periodic solution under consideration is orbitally asymptotically stable.

Proof The proof is similar to the previous proofs. As d (Γ′si) = 0, then

dsi+1 =
(

I − k−1
I viΓ

′) eATi dsi = Midsi.

So, dsk+1
1 = M2M1dsk

1, and use of fixed point principle completes the proof. �

Note that here we can obtain sufficient conditions for the orbital stability in the alternative
way. Suppose

Γ = γ̂ +
(

e−Aτ
)′

γ, l̂1 = l1 + γ′
∫ τ

0
e−Atcm2dt, l̂2 = l2 + γ′

∫ τ

0
e−Atcm1dt,

v1 = Aŝ2 + cm1, v2 = Aŝ1 + cm2, k1, 2 = Γ′v1, 2,

in such a case
Γ′ ŝi = l̂i, i = 1, 2,
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and the periodic solution will be orbitally asymptotically stable if k1,2 �= 0 and∥∥∥(
I − k−1

2 v2Γ′) eAT2
(

I − k−1
1 v1Γ′) eAT1

∥∥∥ < 1.

All the above statements we can reformulate in a similar way, defining the above vector Γ,
considering the switching points instead of pre-switching and re-defining threshold values li
(or l0, l in case of (3)).
Let us return to the system (6). In general case we can repeate the previous derivations. Let it
has a periodic solution with two control switching points ŝ1,2, such as

k

∑
i=1

γ′
i s1,i = l1,

k

∑
i=1

γ′
i s2,i = l2,

where
ŝ1 = x

(
τi, s1,i, m2

)
, ŝ2 = x

(
τi, s2,i, m1

)
, i = 1, k.

Then
k

∑
i=1

γ′
i

(
e−Aτi ŝ1 −

∫ τi

0
e−Atcm2dt

)
= l1,

k

∑
i=1

γ′
i

(
e−Aτi ŝ2 −

∫ τi

0
e−Atcm1dt

)
= l2,

and
Γŝj = l̂ j, j = 1, 2,

here

Γ =
k

∑
i=1

(
e−Aτi

)′
γi, l̂1 = l1 +

k

∑
i=1

γ′
i

∫ τi

0
e−Atcm2dt, l̂2 = l2 +

k

∑
i=1

γ′
i

∫ τi

0
e−Atcm1dt.

So the considered periodic solution will be orbitally asymptotically stable if k1,2 �= 0 and∥∥∥(
I − k−1

2 v2Γ′) eAT2
(

I − k−1
1 v1Γ′) eAT1

∥∥∥ < 1,

where
v1 = Aŝ2 + cm1, v2 = Aŝ1 + cm2, k1, 2 = Γ′v1, 2.

Of course the system considered can have periodic solutions with amount of control switching
points larger then two. Consider an example:

Example 5. Consider the system (6), (2). Let τ1 = 0.013, τ2 = 0.015,

A =

⎛
⎝−0.25 −1. −0.25

0.75 1. 0.75
0.25 −7. −3.75

⎞
⎠ , c =

⎛
⎝1

1
1

⎞
⎠ , γ1 =

⎛
⎝ 0.536

0
0

⎞
⎠ , γ2 =

⎛
⎝ 0

−1.108
−0.567

⎞
⎠ ,

m1,2 = ∓1, l1 = −0.1, l2 = 0.5.

System (1), (2) has periodic solution with six switching points:

ŝ1 ≈
⎛
⎝ 0.69484

−0.64902
2.12876

⎞
⎠ , ŝ2 ≈

⎛
⎝ 0.06226

−1.91945
2.92801

⎞
⎠ , ŝ3 ≈

⎛
⎝ 0.72238

−1.05935
2.95759

⎞
⎠ ,

ŝ4 ≈
⎛
⎝ 0.51706

−1.95858
3.43423

⎞
⎠ , ŝ5 ≈

⎛
⎝ 1.08072

−0.87355
2.93260

⎞
⎠ , ŝ6 ≈

⎛
⎝ 0.11909

−1.44650
2.05635

⎞
⎠ ,
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T1 ≈ 1.8724, T2 ≈ 0.4018, T3 ≈ 6.8301, T4 ≈ 0.4019, T5 ≈ 1.6087, T6 ≈ 0.4084.

Let

Γ =
(

e−Aτ1
)′

γ1 +
(

e−Aτ2
)′

γ2 ≈ (
0.552607 −1.144496 −0.584956

)
,

l̂1 = l1 + γ′
1

∫ τ1

0
e−Atcm2dt + γ′

2

∫ τ2

0
e−Atcm2dt ≈ −0.118450,

l̂2 = l2 + γ′
1

∫ τ1

0
e−Atcm1dt + γ′

2

∫ τ2

0
e−Atcm1dt ≈ 0.518450,

then
Γ′ ŝ1 = Γ′ ŝ3 = l̂1, Γ′ ŝ2 = Γ′ ŝ4 = l̂1.

Denote
u2k+1 = m1, u2k = m2.

One can verify that
ki = Γ′ (Aŝi+1 + cui) �= 0, i = 1, 6.

Let
Mi =

(
I − k−1

i (Asi+1 + cui) Γ′) eATi ,

in such a case

‖M‖ =

∥∥∥∥∥
1

∏
i=6

Mi

∥∥∥∥∥ ≈ 0.13771 < 1

and the periodic solution under consideration is asymptotically orbitally stable.

Let us obtain similar results for the system (4). Suppose for simplicity that

ẋ = Ax + (Cx + c) f (σ̂(t) + σ(t − τ)) , σ̂ = γ̂′x, σ = γ′x. (8)

Let f is given by the (2). Denote

Ai = A + Cmi, ci = cmi, i = 1, 2, xi(T, x0) = eAiT x0 +
∫ T

0
eAi(T−t)cidt.

Let the system (8), (2) has a periodic solution with two switching points ŝ1, 2 such as

ŝ1 = x2(T2, ŝ2), ŝ2 = x1(T1, ŝ1),

γ̂′ ŝ1 + γ′s1 = l1, γ̂′ ŝ2 + γ′s2 = l2,

here
ŝ1 = eA2τs1 +

∫ τ

0
eA2(τ−t)c2dt, ŝ2 = eA1τs2 +

∫ τ

0
eA1(τ−t)c1dt.

So,

γ̂′eA2τs1 + γ̂′
∫ τ

0
eA2(τ−t)c2dt + γ′s1 = l1, γ̂′eA1τs2 + γ̂′

∫ τ

0
eA1(τ−t)c1dt + γ′s2 = l2,

or
Γ′

1s1 = l̂1, Γ′
2s2 = l̂2,
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where

Γ1 =
(

eA2τ
)′

γ̂ + γ, Γ2 =
(

eA1τ
)′

γ̂ + γ,

l̂1 = l1 − γ̂′
∫ τ

0
eA2(τ−t)c2dt, l̂2 = l2 − γ̂′

∫ τ

0
eA1(τ−t)c1dt.

Let
v1 = A1s2 + c1, v2 = A2s1 + c2, k1 = Γ′

2v1, k2 = Γ′
1v2.

Theorem 4. If k1,2 �= 0 and∥∥∥(
I − k−1

2 v2Γ′
1

)
eA2T2+(A1−A2)τ

(
I − k−1

1 v1Γ′
2

)
eA1T1+(A2−A1)τ

∥∥∥ < 1,

where
Ai = A + Cmi, ci = cmi, i = 1, 2.

Then the considered periodic solution is orbitally asymptotically stable.

Proof As

s2 = x1 (T1 − τ, x2(τ, s1)) =

= eA1 T1+(A2−A1)τs1 + eA1(T1−τ)
∫ τ

0
eA2(τ−t)c2dt +

∫ T1−τ

0
eA1(T1−τ−t)c1dt,

(s2)
′
s1

= eA1T1+(A2−A1)τ, (s2)
′
T1

= A1s2 + c1 = v1,

then

0 = d
(
Γ′

2s2
)

= Γ′
2eA1T1+(A2−A1)τds1 + k1dT1,

dT1 = −k−1
1 Γ′

2eA1T1+(A2−A1)τds1, and ds2 =
(

I − k−1
1 v1Γ′

2

)
eA1T1+(A2−A1)τds1.

Similarly,

ds2 =
(

I − k−1
2 v2Γ′

1

)
eA2T2+(A1−A2)τds2.

In order to finalize the proof one can use the fixed point principle for s1. �

In case of the system (8), (3) the sufficient conditions for orbital stability will change slightly.
Let the system has periodic solution with four control switching points ŝi, i = 1, 4, where

ŝi+1 = xi (T1, ŝi) .

Let si, i = 1, 4, are points on the trajectory of the solution such as

ŝi = xi−1 (si, τ) ,

and
γ̂′ ŝi + γ′si = li, l1 = l0, l2 = −l, l3 = −l0, l4 = l.

In such a case
γ̂′eAi−1τsi + γ̂′

∫ τ

0
eAi−1(τ−t)ci−1dt + γ′si = l̂i,

or
Γisi = l̂i, i = 1, 4, Γi =

(
eAi−1τ

)′
γ̂ + γ, l̂i = li − γ̂′

∫ τ

0
eAi−1(τ−t)ci−1dt.

107
On Stable Periodic Solutions of
One Time Delay System Containing Some Nonideal Relay Nonlinearities



Denote

vi = Aisi+1 + ci, ki = Γ′
i+1vi, Mi =

(
I − k−1

i viΓ
′
i+1

)
eAiTi+(Ai−1−Ai)τ

Theorem 5. Let ki �= 0, i = 1, 4, and ∥∥∥∥∥
1

∏
i=4

Mi

∥∥∥∥∥ < 1, (9)

then the periodic solution is orbitally asymptotically stable.

Let us skip the proof, it is similar to the above one.

Example 6. Let A, c, l1,2, m1,2 are the same as in the example 5,

C =

⎛
⎝−0.01 0 0

0 0.005 0
−0.01 0.01 0.005

⎞
⎠ ,

and
ẋ = Ax + (Cx + c) f (−0.565x3(t)− 1.11x2(t − 0.015) + 0.54x1(t − 0.1)) ,

where f is given by the (2). I.e.

τ1 = 0, τ2 = 0.015, τ3 = 0.1,

γ′
1 =

(
0 0 −0.565

)
, γ′

2 =
(
0 −1.11 0

)
, γ′

3 =
(
0.54 0 0

)
.

In such a case the system has a periodic solution with four switching points

ŝ′1 ≈ (
1.1250 −1.0662 3.3411

)
, ŝ′2 ≈ (

0.1806 −1.3848 2.0040
)

,

ŝ′3 ≈ (
0.7081 −0.6317 2.0672

)
, ŝ′4 ≈ (

0.5502 −2.1717 3.9062
)

,

T1 ≈ 1.5668, T2 ≈ 0.3846, T3 ≈ 4.4353, T4 ≈ 0.3890.

Denote

A1,2 = A + Cm1,2,

Γ1 = γ1 +
(

e−A2τ2
)′

γ2 +
(

e−A2τ3
)′

γ3 ≈ (
0.564337 −1.035933 −0.538052

)′ ,

Γ2 = γ1 +
(

e−A1τ2
)′

γ2 +
(

e−A1τ3
)′

γ3 ≈ (
0.563215 −1.036110 −0.538057

)′ ,

l̂1 = l1 + γ′
2

∫ τ2

0
e−A2tcm2dt + γ′

3

∫ τ3

0
e−A2tcm2dt ≈ −0.058212,

l̂2 = l2 + γ′
2

∫ τ2

0
e−A1tcm1dt + γ′

3

∫ τ3

0
e−A1tcm1dt ≈ 0.458270.

Then
Γ′

1ŝ1 = Γ′
1 ŝ3 = l̂1, Γ′

2 ŝ2 = Γ′
2 ŝ4 = l̂2.

Let

v1 = A1 ŝ2 + cm1, v2 = A2 ŝ3 + cm2, v3 = A1 ŝ4 + cm1, v4 = A2 ŝ1 + cm2,
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One can easy verify that

k1 = Γ′
2v1 �= 0, k2 = Γ′

1v2 �= 0, k3 = Γ′
2v3 �= 0, k4 = Γ′

1v4 �= 0.

Denote

M1 =
(

I − k−1
1 v1Γ′

2

)
eA1T1 , M2 =

(
I − k−1

2 v2Γ′
1

)
eA2T2 ,

M3 =
(

I − k−1
3 v3Γ′

2

)
eA1T3 , M4 =

(
I − k−1

4 v4Γ′
1

)
eA2T4 .

and

‖M‖ =

∥∥∥∥∥
4

∏
i=1

Mi

∥∥∥∥∥ ≈ 0.3033 < 1.

So, as dsk+1
1 = Mdsk

1, the periodic solution under consideration is orbitally asymptotically
stable.
Similar results can be obtained in case of nonlinearity (3).

6. Perturbed system

Consider a system:
ẋ = Ax + c

(
ϕ(t) + u(t − τ)

)
, (10)

where ϕ(t) is scalar Tϕ-periodic continuous function of time. Let f is given by (3).
Consider a special case of the previous system (see Nelepin (2002), Kamachkin & Shamberov
(1995)). Let n = 2,

ÿ + g1 ẏ + g2y = u(t − τ) + ϕ(t), (11)

here y(t) ∈ R is sought-for time variable, g1, 2 are real constants, σ = α1y + α2ẏ, α1, 2 are real
constants. Let us rewrite system (11) in vector form. Denote z′ =

(
y ẏ

)
, in that case

ż = Pz + q (ϕ(t) + u(t − τ)) , (12)

u(t − τ) = f (σ(t − τ)) , σ = α′ z,

where

P =
(

0 1
−g2 −g1

)
, q =

(
0
1

)
, α =

(
α1
α2

)
.

Suppose that characteristic determinant D(s) = det (P − sI) has real simple roots λ1, 2, and
vectors q, Pq are linearly independent. In that case system (12) may be reduced to the
form (10), where

A =
(

λ1 0
0 λ2

)
, c =

(
1
1

)
,

by means of nonsingular linear transformation

z = Tx, T =

⎛
⎝ N1(λ1)

D′(λ1)
N1(λ2)
D′(λ2)

N2(λ1)
D′(λ1)

N2(λ2)
D′(λ2)

⎞
⎠ , D′(λj) =

d
ds

D(s)
∣∣∣∣
s=λj

, Nj(s) =
2

∑
i=1

qiDij(s), (13)

Dij(s) is algebraic supplement for element lying in the intersection of i-th row and j-th column
of determinant D(s).
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Note that
σ = γ ′ x, γ = T ′ α.

Furthermore, since

γi = − (
D′ (λi)

)−1
2

∑
j=1

αj Nj (λi) , i = 1, 2.

then
γ1 = (λ1 − λ2)

−1 (α1 + α2λ1) , γ2 = (λ2 − λ1)
−1 (α1 + α2λ2) .

Transformation (13) leads to the following system:{
ẋ1 = λ1x1 + f (σ(t − τ)) + ϕ(t),
ẋ2 = λ2x2 + f (σ(t − τ)) + ϕ(t).

(14)

If, for example,
α1 = −λ1α2,

then
γ1 = 0, γ2 = α2, σ = γ2x2.

Function f in that case is independent of variable x1, and

σ̇ = λ2σ + γ2 ( f (γ2 x2(t − τ)) + ϕ(t)) .

Solution of the latest equation when f = u (where u = m1, m2 or 0) has the following form:

σ (t, t0, σ0, u) = eλ2(t−t0)σ0 + γ2 eλ2t
∫ t

t0

e−λ2s
(

u + ϕ(s)
)

ds.

Let us trace out necessary conditions for existing of periodic solution of the system (10), (3)
having four switching points ŝi:

σ2 = σ (t1, t0 + τ, σ̂1, 0) , σ̂2 = σ (t1 + τ, t1, σ2, 0) ,

σ3 = σ (t2, t1 + τ, σ̂2, m1) , σ̂3 = σ (t2 + τ, t2, σ3, m1) ,

σ4 = σ (t3, t2 + τ, σ̂3, 0) , σ̂4 = σ (t3 + τ, t3, σ4, 0) ,

σ1 = σ (t4, t3 + τ, σ̂4, m2) , σ̂1 = σ (t4 + τ, t4, σ1, m2) ,

for some positive Ti, i = 1, 4, and ti = ti−1 + Ti. Denote u1 = 0, u2 = m1, u3 = 0, u4 =
m2, then

σi+1 = σ (ti, ti−1 + τ, σ (ti−1 + τ, ti−1, σi, ui−1) , ui) =

= eλ2(Ti−τ)
(

eλ2τσi + γ2eλ2(ti−1+τ)
∫ ti−1+τ

ti−1

e−λ2t (ui−1 + ϕ(t)) dt
)

+

+γ2eλ2ti

∫ ti

ti−1+τ
e−λ2t (ui + ϕ(t)) dt = eλ2Ti σi + Ki,

where

Ki = γ2eλ2ti

(∫ ti

ti−1

e−λ2t ϕ(t) dt +
∫ ti−1+τ

ti−1

e−λ2tui−1 dt +
∫ ti

ti−1+τ
e−λ2tui dt

)
.
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So, ⎛
⎜⎜⎝

σ1
σ2
σ3
σ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 eλ2T4

eλ2 T1 0 0 0
0 eλ2T2 0 0
0 0 eλ2T3 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

σ1
σ2
σ3
σ4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

K1
K2
K3
K4

⎞
⎟⎟⎠

and

σ1 =
(

1 − eλ2 T
) (

K2eλ2(T2+T3+T4) + K3eλ2(T3+T4) + K4eλ2 T4 + K1

)
= l0,

σ2 =
(

1 − eλ2 T
) (

K3eλ2(T1+T3+T4) + K4eλ2(T1+T4) + K1eλ2 T1 + K2

)
= −l,

σ3 =
(

1 − eλ2 T
) (

K4eλ2(T1+T2+T4) + K1eλ2(T1+T2) + K2eλ2 T2 + K3

)
= −l0,

σ4 =
(

1 − eλ2 T
) (

K1eλ2(T1+T2+T3) + K2eλ2(T2+T3) + K3eλ3 T3 + K4

)
= l,

here T = T1 + T2 + T3 + T4 is a period of the solution (let it is multiple of Tϕ). Consider the
latest system as a system of linear equations with respect to γ2, m (for example), i.e.

σ1 = Ψ1(m, γ2) = l0, σ2 = Ψ2(m, γ2) = −l, σ3 = Ψ3(m, γ2) = −l0, σ4 = Ψ4(m, γ2) = l.

Suppose Ψi ≡ −Ψi+2 (it can be if the solution is origin-symmetric).
Denote

ψ̂i(t) = σ (ti + t, ti, σi, ui−1) , t ∈ [0, τ) ,
ψi(t) = σ (ti + τ + t, ti + τ, σ̂1, ui) , t ∈ [0, Ti − τ)

Following result may be formulated.

Theorem 6. Let the system {
Ψ1(m, γ2) = l0,
Ψ2(m, γ2) = −l.

has a solution such as for given γ =
(
0, γ2

) ′ and m conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ̂1(t) > −l, t ∈ [0, τ),
ψ1(t) > −l, t ∈ [0, T1 − τ),
ψ̂2(t) > −l0, t ∈ [0, τ),
ψ2(t) > −l0, t ∈ [0, T2 − τ),
ψ̂3(t) < l, t ∈ [0, τ),
ψ3(t) < l, t ∈ [0, T3 − τ),
ψ̂4(t) > l0, t ∈ [0, τ),
ψ4(t) > l0, t ∈ [0, T4 − τ)

(15)

are satisfied. In that case system (14) has a stable T-periodic solution with switching points ŝi, if
λ1 < 0 and

T T−1
ϕ ∈ N.

Proof In order to prove the theorem it is enough to note that under above-listed conditions
system (14) settles self-mapping of switching lines σ = li. Moreover, for any x(i) lying on
switching line,

x(i+1)
1 = eλ1 Tx(i)

1 + Θ, Θ ∈ R,
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and in general case (Θ �= 0) the latter difference equation has stable solution only if λ1 < 0. �
In order to pass onto variables zi it is enough to effect linear transform (13).
Note that conditions (15) may be readily verified using mathematical symbolic packages.
Of course the statement Theorem 6 is just an outline. Further investigation of the system (11)
requires specification of ϕ function, detailed computations are quite laborious.
On the analogy with the previous section a case of multiple delays can be observed.

7. Conclusion

The above results suppose further development. Investigation of stable modes of the
forced system (10) is an individual complex task (systems with several delays may also be
considered). Results similar to obtained in the last part can be outlined for periodic solutions
of the system (10) having a quite complicated configuration (large amount of control switching
point etc.).
Stabilization problem (i.e. how to choose setup variables of a system in order to put its steady
state solution in a prescribed neighbourhood of the origin) was not discussed. This problem
was elucidated in Zubov (1999), Zubov & Zubov (1996) for a bit different systems.
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Design of Controllers for Time Delay Systems: 
Integrating and Unstable Systems 

Petr Dostál, František Gazdoš, and Vladimír Bobál 
Faculty of Applied Informatics, Tomas Bata University in Zlín 

Nad Stráněmi 4511, 760 05 Zlín 5,  
Czech Republic 

1. Introduction 
The presence of a time delay is a common property of many technological processes. In 
addition, a part of time delay systems can be unstable or have integrating properties. 
Typical examples of such processes are e.g. pumps, liquid storing tanks, distillation columns 
or some types of chemical reactors. 
Plants with a time delay often cannot be controlled by usual controllers designed without 
consideration of the dead-time. There are various ways to control such systems. A number 
of methods utilise PI or PID controllers in the classical feedback closed-loop structure, e.g. 
(Park et al., 1998; Zhang and Xu, 1999; Wang and Cluett, 1997; Silva et al., 2005). Other 
methods employ ideas of the IMC (Tan et al., 2003) or robust control (Prokop and Corriou, 
1997). Control results of a good quality can be achieved by modified Smith predictor 
methods, e.g. (Åström et al., 1994; De Paor, 1985; Liu et al., 2005; Majhi and Atherton, 1999; 
and Matausek and Micic, 1996). 
Principles of the methods used in this work and design procedures in the 1DOF and 2DOF 
control system structures can be found in papers of authors of this article (Dostál et al., 2001; 
Dostál et al., 2002). The control system structure with two feedback controllers is considered 
(Dostál et al., 2007; Dostál et al., 2008). The procedure of obtaining controllers is based on the 
time delay first order Padé approximation and on the polynomial approach (Kučera, 1993). 
For tuning of the controller parameters, the pole assignment method exploiting the LQ 
control technique is used (Hunt et al., 1993). The resulting proper and stable controllers 
obtained via polynomial Diophantine equations and spectral factorization techniques ensure 
asymptotic tracking of step references as well as step disturbances attenuation. Structures of 
developed controllers together with analytically derived formulas for computation of their 
parameters are presented for five typical plant types of integrating and unstable time delay 
systems: an integrating time delay system (ITDS), an unstable first order time delay system 
(UFOTDS), an unstable second order time delay system (USOTDS), a stable first order plus 
integrating time delay system (SFOPITDS) and an unstable plus integrating time delay 
system (UFOPITDS). Presented simulation results document usefulness of the proposed 
method providing stable control responses of a good quality also for a higher ratio between 
the time delay and unstable time constants of the controlled system. 
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2. Approximate transfer functions 
The transfer functions in the sequence ITDS, UFOTDS, USOTDS, SFOPITDS and UFOPITDS 
have  these forms: 

 1( ) d sKG s e
s

τ−=  (1) 

 2( )
1

d sKG s e
s

τ

τ
−=

−
 (2) 

 3
1 2

( )
( 1)( 1)

d sKG s e
s s

τ

τ τ
−=

− +
 (3) 

 4,5( )
( 1)

d sKG s e
s s

τ

τ
−=

±
. (4) 

Using the first order Padé approximation, the time delay term in (1) – (4) is approximated by  

 2
2

d s d

d

se
s

τ τ
τ

− −
≈

+
. (5) 

Then, the approximate transfer functions take forms  

 0 1
1 2

1

(2 )( )
(2 )

d
A

d

K s b b sG s
s s s a s

τ
τ

− −
= =

+ +
 (6) 

where 0
2

d

Kb
τ

=  , 1b K= and 1
2

d
a

τ
=   for the ITDS, 

 0 1
2 2

1 0

(2 )( )
( 1)(2 )

d
A

d

K s b b sG s
s s s a s a

τ
τ τ

− −
= =

− + + +
 (7) 

with 0
2

d

Kb
τ τ

= , 1
Kb
τ

= , 0
2

d
a

τ τ
= − , 1

2 d

d
a τ τ

ττ
−

=  and  τd ≠ 2τ  for the UFOTDS, 

 3
1 2

(2 )( )
( 1)( 1)(2 )

d
A

d

K sG s
s s s

τ
τ τ τ

−
=

− + +
0 1

3 2
2 1 0

b b s
s a s a s a

−
=

+ + −
 (8) 

where   

0
1 2

2

d

Kb
τ τ τ

= , 1
1 2

Kb
τ τ

= , 0
1 2

2

d
a

τ τ τ
= , 1 2

1
1 2

2( ) d

d
a τ τ τ

τ τ τ
− −

= ,  

1 2 1 2
2

1 2

2 d d

d
a τ τ τ τ τ τ

τ τ τ
+ −

=  and  τd ≠ 2τ1  for the USOTDS, and, 

 0 1
4,5 3 2

2 1

(2 )( )
( 1)(2 )

d
A

d

K s b b sG s
s s s s a s a s

τ
τ τ

− −
= =

± + + +
 (9) 
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where 0
2

d

Kb
τ τ

= ,  1
Kb
τ

= ,  1
2

d
a

τ τ
= ± , 2

2 d

d
a τ τ

ττ
±

=  and τd ≠ 2τ  for the SFOPITDS and 

UFOPTDS, respectively. 
All approximate transfer functions (6) – (9) are strictly proper transfer functions  

 ( )( )
( )A

b sG s
a s

=  (10) 

where b and a are coprime polynomials in s that fulfill the inequality deg degb a< . 
The polynomial a(s) in their denominators can be expressed as a product of the stable and 
unstable part 

 ( ) ( ) ( )a s a s a s+ −=  (11) 

so that for ITDS, UFOTDS, USOTDS and SFOPITDS the equality 

 deg deg 1a a+ = −  (12) 
is fulfilled. 

3. Control system description 
The control system with two feedback controllers is depicted in Fig. 1. In the  scheme,  w is 
the reference, v  is the load disturbance, e is the tracking error, u0 is the controller output, y is 
the controlled output, u is the control input and GA  represents one of the approximate 
transfer functions (6) – (9) in the general form (10).  
Remark: Here, the approximate transfer function GA is used only for a controller derivation. 
For control simulations, the models G1 – G5 are utilized. 
Both w and v are considered  to be step functions with Laplace transforms 

 0( ) wW s
s

= ,  0( ) vV s
s

= . (13) 

The transfer functions of controllers are assumed as 

 ( )( )
( )

q sQ s
p s

= ,  ( )( )
( )

r sR s
p s

=  (14) 

where , andq r p are polynomials in s. 
 

 v 

-  - 

 y  u  u0 e  w
 R

 Q

 GA 

 
Fig. 1. The control system. 
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4. Application of the polynomial method 
The controller design described in this section follows the polynomial approach. General 
requirements on the control system are formulated as its internal properness and strong 
stability (in addition to the control system stability, also the controller stability is required), 
asymptotic tracking of the reference and load disturbance attenuation. The procedure to 
derive admissible controllers can be performed as follows: 
Transforms of basic signals in the closed-loop system from Fig.1 take following forms (for 
simplification, the argument s is in some equations omitted) 

 ( ) ( ) ( )bY s r W s pV s
d

= +⎡ ⎤⎣ ⎦  (15) 

 1( ) ( ) ( ) ( )E s ap bq W s bpV s
d

= + −⎡ ⎤⎣ ⎦  (16) 

 ( ) ( ) ( )aU s r W s pV s
d

= +⎡ ⎤⎣ ⎦  (17) 

where 

 ( ) ( ) ( ) ( ) ( ) ( )d s a s p s b s r s q s= + +⎡ ⎤⎣ ⎦  (18) 

is the characteristic polynomial with roots as poles of the closed-loop. 
Establishing the polynomial t as 

 ( ) ( ) ( )t s r s q s= +  (19) 

and substituting (19) into (18), the condition of the control system stability is ensured when 
polynomials p  and t are given by a solution of the polynomial Diophantine equation 

 ( ) ( ) ( ) ( ) ( )a s p s b s t s d s+ =  (20) 

with a stable polynomial d on the right side. 
With regard to transforms (13), the asymptotic tracking and load disturbance attenuation are 
provided by divisibility of both terms ap bq+  and p  in (16) by s. This condition is fulfilled 
for polynomials p and q having forms 

 ( ) ( )p s s p s= ,  ( ) ( )q s sq s= . (21) 

Subsequently, the transfer functions (14) take forms 

 ( )( )
( )

q sQ s
p s

= ,  ( )( )
( )

r sR s
sp s

=  (22) 

and, a stable polynomial p(s) in their denominators ensures the stability of controllers (the 
strong stability of the control system).  
The control system satisfies the condition of internal properness when the transfer functions 
of all its components are proper. Consequently, the degrees of polynomials q and r must 
fulfil these inequalities 
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 deg degq p≤ ,  deg deg 1r p≤ + . (23) 

Now, the polynomial t can be rewritten to the form 

 ( ) ( ) ( )t s r s sq s= + . (24) 

Taking into account solvability of (20) and conditions (23), the degrees of polynomials in 
(19) and (20) can be easily derived as 

 deg deg degt r a= = , deg deg 1q a= − , deg deg 1p a≥ − , deg 2degd a≥ . (25) 

Denoting deg a = n, polynomials t, r and q have forms 

 
0

( )
n

i
i

i
t s t s

=

= ∑ , 
0

( )
n

i
i

i
r s r s

=

= ∑ , 1

1
( )

n
i

i
i

q s q s −

=

= ∑  (26) 

and, relations among their coefficients are 

 0 0r t= ,  i i ir q t+ =  for 1, ... ,i n=  (27) 

Since by a solution of the polynomial equation (20) only coefficients ti can be calculated, 
unknown coefficients ri and qi can be obtained by a choice of selectable coefficients 

0,1iγ ∈  such that 

 i i ir tγ= ,  (1 )i i iq tγ= −  for 1, ... ,i n= . (28) 

The coefficients γi divide a weight between numerators of transfer functions Q and R.  
Remark: If 1iγ = for all i, the control system in Fig. 1 reduces to the 1DOF control 
configuration (Q = 0). If 0iγ = for all i, and, both reference and load disturbance are step 
functions, the control system corresponds to the 2DOF control configuration. 
The controller parameters then result from solutions of the polynomial equation (20) and 
depend upon coefficients of the polynomial d. The next problem here is to find a stable 
polynomial d that enables to obtain acceptable stabilizing and stable controllers.  

5. Pole assignment 
The polynomial d is considered as a product of two stable polynomials g and m in the form 

 ( ) ( ) ( )d s g s m s=  (29) 

where the polynomial g is a monic form of the polynomial g′  obtained by the spectral 
factorization 

 ( ) ( ) ( ) ( ) ( ) ( )s a s s a s b s b s g s g sϕ∗ ∗ ∗′ ′+ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (30) 

where ϕ > 0 is the weighting coefficient. 
Remark: In the LQ control theory, the polynomial g′  results from minimization of the 
quadratic cost function 
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 { }2 2

0

( ) ( )J e t u t dtϕ
∞

= +∫  (31) 

where ( )e t  is the tracking error and ( )u t is the control input derivative. 
The second polynomial m ensuring properness of controllers is given as 

 2( ) ( )
d

m s a s s
τ

+= = +  (32) 

for both ITDS and UFOTDS, 

 
2

2 1( ) ( )
d

m s a s s s
τ τ

+ ⎛ ⎞⎛ ⎞
= = + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (33) 

for the USOTDS, and,  

 2 1( )
d

m s s s
τ τ

⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. (34) 

for both UFOPITDS and SFOPITDS.  
The coefficients of the polynomial d include only a single selectable parameter ϕ and all 
other coefficients are given by parameters of polynomials b and a. Consequently, the closed 
loop poles location can be affected by a single selectable parameter. As known, the closed 
loop poles location determines both step reference and step load disturbance responses. 
However, with respect to the transform (13), it may be expected that weighting coefficients γ 
influence only step reference responses. 
Then, the monic polynomial g and derived formulas for their parameters have forms 

 3 2
2 1 0( )g s s g s g s g= + + +  (35) 

for both ITDS and UFOTDS, where 

  2
0 1 2 2 1 2

2 1 1 4 2 4, ,
d d d

K Kg g g K g g
τ ϕ ϕ τ ϕ τ

⎛ ⎞
= = + = +⎜ ⎟⎜ ⎟

⎝ ⎠
 (36) 

for the ITDS, and, 
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2 2 2 2
2 1

2 1 1 1 1, 4 1 ,

1 12 4

d d
d d

d d
d

Kg g K g K

g g

ττ τ
ττ ττ ϕ ϕϕ

τ τ τ τ
ττ ϕ

⎛ ⎞
= = + +⎜ ⎟

⎝ ⎠

= + +

 (37) 

for the UFOTDS, and, 

 4 3 2
3 2 1 0( )g s s g s g s g s g= + + + +  (38) 
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for USOTDS, SFOPITDS and UFOPITDS, where 

 

2

0 1 2 2 2 2 2 2
1 2 1 2 1 2 1 2

2 2 2
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1 2 1 2 1 2

2 1 4 1 4,
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ϕ τ τ τ ϕ τ τ τ ϕ τ τ τ
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= = + +⎜ ⎟⎜ ⎟

⎝ ⎠

+ +
= − + = + + +

 (39) 

 

for the USOTDS, and,  
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0 1 2 2

2 1 3 3 2 2 2

2 41 1, ,
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d d

d d d
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⎝ ⎠

⎛ ⎞
= + − = + +⎜ ⎟⎜ ⎟

⎝ ⎠

 (40)  

 

for both SFOPITDS ans UFOPITDS. 
The transfer functions of controllers are 

 2 1

0
( ) q s qQ s

s p
+

=
+

,  
2

2 1 0

0
( )

( )
r s r s rR s

s s p
+ +

=
+

 (41) 

 

for both ITDS and UFOTDS, and, 

 
2 3 2

3 2 1 3 2 1 0
2 2

1 0 1 0
( ) , ( )

( )
q s q s q r s r s r s rQ s R s
s p s p s s p s p

+ + + + +
= =

+ + + +
 (42) 

 

for the USOTDS, SFOPITDS and UFOPITDS. 

6. Controller parameters 
For the sake of limited space, formulas derived from (20) for all considered systems together 
with conditions of the controllers’ stability are introduced in the form of tables. Parameters ri 
and qi in (41) and (42) can then be calculated from ti according to (28). 
 

0 2 1 0(2 )
4
d

dp g g gτ τ= + + , 0 0
1t g
K

=  

1 1 0
1 ( )dt g g
K

τ= + , 2 1 0(2 )
4

d
dt g g

K
τ τ= +  

p0 > 0 for all τd 

 

Table 1. Controller parameters for the ITDS 
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Table 2. Controller parameters for the UFOTDS 
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p1 > 0 for all τd , p0 > 0 for τd < 2τ1 

Table 3. Controller parameters for the USOTDS 
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Table 4. Controller parameters for the SFOPITDS 
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p1 > 0 for all τd , p0 > 0 for τd < 2τ 

Table 5. Controller parameters for the UFOPITDS 
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7. Simulation results 
The simulations were performed by MATLAB-Simulink tools. For all simulations, the unit 
step reference w was introduced at the time t = 0 and the step load disturbance v after 
settling of the step reference responses.  

7.1 ITDS 
In the transfer function (1), let K = 1. The responses in Fig. 2 for τd = 5 show the effect of ϕ 
upon the control quality. An increasing value ϕ improves control stability, and, by choosing 
its value higher, aperiodic responses can be obtained. Simulation results shown in Fig. 3 
demonstrate the influence of parameters γ on the control responses. Their smaller values 
accelerate step reference responses but they do not affect load disturbance responses. Higher 
values of γ can lead to overshoots and oscillations. The effect of parameters γ on the control  
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Fig. 2. ITDS: controlled output responses (τd = 5, v = - 0.1, γ1 = γ2 = 0) 
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Fig. 3. ITDS: controlled output response (τd = 5, v = - 0.1, ϕ = 900). 
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Fig. 4. ITDS: Control input and controlled output responses (τd = 5, ϕ = 900) 
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Fig. 5. ITDS: Controller parameters’ dependence on ϕ (τd = 5) 

input can be seen in Fig.4. Their higher values result in greater control inputs and their 
changes. This fact can be important in control of realistic processes. Dependence of the 
controller parameters on ϕ for τd = 5 is shown in Fig. 5.  

7.2 UFOTDS 
In this case, the parameters in (2) have been chosen as K = 4, τ = 4. The effect of ϕ on the 
control responses is similar to the ITDS, as shown in Fig. 6. The control responses for 
limiting values γ1 = γ2 = 1 and γ1 = γ2 = 0 (corresponding to the 1DOF and 2DOF structure) 
are in Fig. 7. The responses document unsuitability of the 1DOF structure application. The 
control response for τd = 4 is shown in  Fig. 8. The presented response without any overshoots 
documents usefulness of the proposed method also for relatively high values of τd. The 
responses in Fig. 9 demonstrate robustness of the proposed method against changes of τd.  
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Fig. 6. UFOTDS: controlled output responses (τd = 2, v = - 0.1, γ1 = γ2 = 0) 
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Fig. 7. UFOTDS: controlled output responses (τd = 2, v = - 0.05, ϕ = 400) 
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Fig. 8. UFOTDS: controlled output response (τd = 4, v = - 0.05, ϕ = 2500, γ1 = γ2 = 0) 
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Fig. 9. Robustness against a change of τd (v = - 0.1, ϕ = 400, γ1 = γ2 = 0) 

The controller parameters were computed for a nominal model with τd = 2 and subsequently 
used for perturbed models with the +10% and +25% estimation error in the τd. 

7.3 USOTDS 
In this case, the parameters in (3) were selected to be K = 1, τ1 = 4, τ2 = 2. Analogous to 
controlling  the UFOTDS, the responses in Fig. 10 prove applicability of the proposed 
method also for an USOTDS with a relatively high ratio between  the time delay and an 
unstable time constant (τd /τ1 = 1). The responses in Fig. 11 demonstrate the possibility of 
extensive control acceleration, and, also high sensitivity of the control responses to the 
selection of parameters γ. 
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Fig. 10. USOTDS: controlled output responses (τd = 4, v = - 0.05, γ1 = γ2 = γ3 = 0) 
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Fig. 11. USOTDS: controlled output responses (τd = 2, v = - 0.05, ϕ = 100, γ3 = 0) 

7.4 SFOPITDS 
For this model, the parameters in (4) have been chosen as K = 1, τ = 4, τd = 4. A suitable 
selection of parameters ϕ and γ provides control responses of a good quality, as illustrated in 
Figs. 12 and 13. 
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Fig. 12. SFOPITDS: controlled output responses (τd = 4, v = - 0.05, γ1 = γ2 = γ3 = 0) 
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Fig. 13. SFOPITDS: controlled output responses (τd = 4, v = - 0.05, ϕ = 900). 

7.5 UFOPITDS 
Here, the model parameters in (4) have been chosen the same as for the SFOPITDS. With 
regard to the presence of both integrating and unstable parts, the UFOPITDS belongs to 
hardly controllable systems. However, the control responses in Fig. 14 document usefulness 
of the proposed method also for such systems. Obviously, for higher values τd also higher 
values of ϕ have to be chosen.  Moreover, for this system, only the 2DOF structure with zero 
parameters γ should be used as follows from Fig. 15. 
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Fig. 14. UFOPITDS: controlled output responses (τd = 3, v = - 0.025, γ1 = γ2 = γ3 = 0) 
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Fig. 15. UFOPITDS: controlled output responses (τd = 2, v = - 0.05, ϕ = 100) 

8. Conclusions 
The problem of control design for integrating and unstable time delay systems has been 
solved and analysed. The proposed method is based on the Padé  time delay approximation. 
The controller design uses the polynomial synthesis and results of the LQ control theory. 
The presented procedure provides satisfactory control responses for the tracking of a step 
reference as well as for the step load disturbance attenuation. The procedure enables tuning 
of the controller parameters by two types of selectable parameters. Using derived formulas, 
the controller parameters can be automatically computed. As a consequence, the method 
could also be used for adaptive control. 
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1. Introduction

In dealing with a large-scale system, one usually does not have adequate knowledge of the
plant parameters and interactions among subsystems. The decentralized adaptive technique,
designed independently for local subsystems and using locally available signals for feedback
propose, is an appropriate strategy to be employed. In the context of decentralized adaptive
control, a number of results have been obtained, see for examples Ioannou (1986); Narendra
& Oleng (2002); Ortega (1996); Wen (1994). Since backstepping technique was proposed, it has
been widely used to design adaptive controllers for uncertain systems Krstic et al. (1995). This
technique has a number of advantages over the conventional approaches such as providing
a promising way to improve the transient performance of adaptive systems by tuning design
parameters. Because of such advantages, research on decentralized adaptive control using
backstepping technique has also received great attention. In Wen & Soh (1997), decentralized
adaptive tracking for linear systems was considered. In Jiang (2000), decentralized adaptive
tracking of nonlinear systems was addressed, where the interaction functions satisfy global
Lipschitz condition and the proposed controllers are partially decentralized. In Wen &
Zhou (2007); Zhou & Wen (2008a;b), systems with higher order nonlinear interactions were
considered by using backstepping technique.
Stabilization and control problem for time-delay systems have received much attention, see
for examples, Jankovic (2001); Luo et al. (1997); Wu (1999), etc. The Lyapunov-Krasovskii
method and Lyapunov-Razumikhin method are always employed. The results are often
obtained via linear matrix inequalities. Some fruitful results have been achieved in the past
when dealing with stabilizing problem for time-delay systems using backstepping technique.
In Ge et al. (2003), neural network control cooperating with iterative backstepping was
constructed for a class of nonlinear system with unknown but constant time delays. Jiao
& Shen (2005) and Wu (2002) considered the control problem of the class of time-invariant
large-scale interconnected systems subject to constant delays. In Chou & Cheng (2003), a
decentralized model reference adaptive variable structure controller was proposed for a
large-scale time-delay system, where the time-delay function is known and linear. In Hua et al.
(2005), the robust output feedback control problem was considered for a class of nonlinear
time-varying delay systems, where the nonlinear time-delay functions are bounded by known
functions. In Shyu et al. (2005), a decentralized state-feedback variable structure controller
was proposed for large-scale systems with time delay and dead-zone nonlinearity. However,
in Shyu et al. (2005), the time delay is constant and the parameters of the dead-zone are
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known. Due to state feedback, no filter is required for state estimation. Furthermore, only
the stabilization problem was considered. A decentralized feedback control approach for a
class of large scale stochastic systems with time delay was proposed in Wu et al. (2006). In
Hua et al. (2007) a result of backstepping adaptive tracking in the presence of time delay
was established. In Zhou (2008), we develop a totally decentralized controller for large scale
time-delays systems with dead-zone input. In Zhou et al. (2009), adaptive backstepping
control is developed for uncertain systems with unknown input time-delay.
In fact, the existence of time-delay phenomenon usually deteriorates the system performance.
The stabilization and control problem for time-delay systems is a topic of great importance
and has received increasing attention. Due to the difficulties on considering the effects of
interconnections and time delays, extension of single-loop results to multi-loop interconnected
systems is still a challenging task, especially for decentralized tracking. In this chapter,
the decentralized adaptive stabilization is addressed for a class of interconnected systems
with subsystems having arbitrary relative degrees, with unknown time-varying delays, and
with unknown parameter uncertainties. The nonlinear time-delay functions are unknown
and are allowed to satisfy a nonlinear bound. Also, the interactions between subsystems
satisfy a nonlinear bound by nonlinear models. As system output feedback is employed,
a state observer is required. Practical control is carried out in the backstepping design to
compensate the effects of unknown interactions and unknown time-delays. In our design, the
term multiplying the control effort and the system parameters are not assumed to be within
known intervals. Besides showing stability of the system, the transient performance, in terms
of L2 norm of the system output, is shown to be an explicit function of design parameters and
thus our scheme allows designers to obtain closed-loop behavior by tuning design parameters
in an explicit way.
The main contributions of the chapter include: (i) the development of adaptive compensation
to accommodate the effects of time-delays and interactions; (ii) the use of new
Lyapunov-Krasovskii function in eliminating the unknown time-varying delays.

2. Problem formulation

Considered a system consisting of N interconnected subsystems modelled as follows:

ẋi = Aixi + Φi(yi)θi +

[
0
bi

]
ui +

N

∑
j=1

hij(yj(t− τj(t))) +
N

∑
j=1

fij(t, yj), (1)

yi = cT
i xi, f or i = 1, . . . , N, (2)

Ai =

⎡
⎢⎢⎢⎣

0
... I(ni−1)×(ni−1)
0
0 . . . 0

⎤
⎥⎥⎥⎦ , bi =

⎡
⎢⎣

bi,mi
...

bi,0

⎤
⎥⎦ , Φi(yi) =

⎡
⎢⎣

Φi,1(yi)
...

Φi,ni
(yi)

⎤
⎥⎦ ,

ci = [1, 0, . . . , 0]T. (3)

where xi ∈ �
ni , ui ∈ �

1 and yi ∈ �
1 are the states, input and output of the ith subsystem,

respectively, θi ∈ �ri and bi ∈ �mi+1 are unknown constant vectors, Φi(yi) ∈ �ni×ri is
a known smooth function, fij(t, yj) = [ f 1

ij(t, yj), ..., f ni
ij (t, yj)]

T ∈ �ni denotes the nonlinear
interactions from the jth subsystem to the ith subsystem for j �= i, or a nonlinear un-modelled
part of the ith subsystem for j = i, hij = [h1

ij, ..., hni
ij ]

T ∈ Rni is an unknown function,
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the unknown scalar function τj(t) denotes any nonnegative, continuous and bounded
time-varying delay satisfying

τ̇j(t) ≤ τ̄j < 1, (4)

where τ̄j are known constants. For each decoupled local system, we make the following
assumptions.
Assumption 1: The triple (Ai, bi, ci) are completely controllable and observable.
Assumption 2: For every 1 ≤ i ≤ N, the polynomial bi,mi

smi + · · · + bi,1s + bi,0 is Hurwitz.
The sign of bi,mi

and the relative degree ρi(= ni −mi) are known.
Assumption 3: The nonlinear interaction terms satisfy

| fij(t, yj)| ≤ γ̄ij f̄ j(t, yj)yj, (5)

where γ̄ij are constants denoting the strength of interactions, and f̄ j(yj), j = 1, 2, . . . , N are
known positive functions and differentiable at least ρi times.
Assumption 4: The unknown functions hij(yj(t)) satisfy the following properties

|hij(yj(t))| ≤ ῑijh̄j(yj(t))yj, (6)

where h̄j are known positive functions and differentiable at least ρi times, and ῑkij are positive
constants.

Remark 1. The effects of the nonlinear interactions fij and time-delay functions hij from other
subsystems to a local subsystem are bounded by functions of the output of this subsystem. With these
conditions, it is possible for the designed local controller to stabilize the interconnected systems with
arbitrary strong subsystem interactions and time-delays.

The control objective is to design a decentralized adaptive stabilizer for a large scale system
(1) with unknown time-varying delay satisfying Assumptions 1-4 such that the closed-loop
system is stable.

3. Design of adaptive controllers

3.1 Local state estimation filters
In this section, decentralized filters using only local input and output will be designed to
estimate the unmeasured states of each local system. For the ith subsystem, we design the
filters as

v̇i,ι = Ai,0vi,ι + eni ,(ni−ι)ui, ι = 0, . . . , mi (7)

ξ̇i,0 = Ai,0ξi,0 + kiyi, (8)

Ξ̇i = Ai,0Ξi + Φi(yi), (9)

where vi,ι ∈ �
ni , ξi,0 ∈ �

ni , Ξi ∈ �
ni×ri , the vector ki = [ki,1, . . . , ki,ni

]T ∈ �ni is chosen such
that the matrix Ai,0 = Ai − ki(eni,1)

T is Hurwitz, and ei,k denotes the kth coordinate vector in
�i. There exists a Pi such that PiAi,0 + (Ai,0)

TPi = −3I, Pi = PT
i > 0. With these designed

filters, our state estimate is

x̂i(t) = ξi,0 + Ξiθi +
mi

∑
k=0

bi,kvi,k, (10)
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and the state estimation error εi = xi − x̂i satisfies

ε̇i = Ai,0εi +
N

∑
j=1

fij(t, yj) +
N

∑
j=1

hij(yj(t− τj(t))). (11)

Let Vεi = εT
i Piεi. It can be shown that

V̇εi ≤ −εT
i εi + 2N ‖ Pi ‖

2
N

∑
j=1
‖ fij(t, yj) ‖

2 +2N ‖ Pi ‖
2

N

∑
j=1
‖ hij(yj(t− τj(t))) ‖

2 . (12)

Now system (1) is expressed as

ẏi = bi,mi
vi,(mi,2) + ξi,(0,2) + δ̄T

i Θi + εi,2 +
N

∑
j=1

fij,1(t, yj)

+
N

∑
j=1

hij,1

(
yj(t− τj(t))

)
, (13)

v̇i,(mi,q) = vi,(mi,q+1) − ki,qvi,(mi,1), q = 2, . . . , ρi − 1 (14)

v̇i,(mi,ρi) = vi,(mi,ρi+1) − ki,ρi
vi,(mi,1) + ui, (15)

where

δ̄i = [0, vi,(mi−1,2), . . . , vi,(0,2), Ξi,2 + Φi,1]
T, Θi = [bi,mi

, . . . , bi,0,θT
i ]

T, (16)

and vi,(mi,2), εi,2, ξi,(0,2), Ξi,2 denote the second entries of vi,mi
, εi, ξi,0, Ξi respectively, fij,1(t, yj)

and hij,1(yj(t − τj(t))) are respectively the first elements of vectors fij(t, yj) and hij(yj(t −
τj(t))).

Remark 2. It is worthy to point out that the inputs to the designed filters (7)-(9) are only the local
input ui and output yi and thus totally decentralized.

Remark 3. Even though the estimated state is given in (10), it is still unknown and thus not employed
in our controller design. Instead, the outputs vi,ι, ξi,0 and Ξi from filters (7)-(9) are used to design
controllers, while the state estimation error (11) will be considered in system analysis.

3.2 Adaptive decentralized controller design
In this section, we develop an adaptive backstepping design scheme for decentralized output
tracking. There is no a priori information required from system parameter Θi and thus they
can be allowed totally uncertain. As usual in backstepping approach in Krstic et al. (1995), the
following change of coordinates is made.

zi,1 = yi, (17)

zi,q = vi,(mi,q) − αi,q−1, q = 2, 3, . . . , ρi, (18)

where αi,q−1 is the virtual control at the q-th step of the ith loop and will be determined in
later discussion, p̂i is the estimate of pi = 1/bi,mi

.
To illustrate the controller design procedures, we now give a brief description on the first step.
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• Step 1: Starting with the equations for the tracking error zi,1 obtained from (13), (17) and (18),
we get

żi,1 = bi,mi
vi,(mi,2) + ξi,(0,2) + δ̄T

i Θi + εi,2 +
N

∑
j=1

fij,1(t, yj)

+
N

∑
j=1

hij,1(t, yj(t− τj(t)))

= bi,mi
αi,1 + bi,mi

zi,2 + ξi,(0,2) + δ̄T
i Θi + εi,2 +

N

∑
j=1

fij,1(t, yj)

+
N

∑
j=1

hij,1(t, yj(t− τj(t))). (19)

The virtual control law αi,1 is designed as

αi,1 = p̂iᾱi,1 , (20)

ᾱi,1 = −
(
ci,1 + li,1

)
zi,1 − l∗i zi,1

(
f̄ i(yi)

)2
− λ∗i zi,1

(
h̄i(yi)

)2
− ξi,(0,2)− δ̄T

i Θ̂i, (21)

where ci,1, li,1, l∗i and λ∗i are positive design parameters, Θ̂i and p̂i are the estimates of Θi and
pi , respectively. Using p̃i = pi − p̂i, we obtain

bi,mi
αi,1 = bi,mi

p̂iᾱi,1 = ᾱi,1 − bi,mi
p̃iᾱi,1, (22)

δ̄T
i Θ̃i + bi,mi

zi,2 = δ̄T
i Θ̃i + b̃i,mi

zi,2 + b̂i,mi
zi,2

= δ̄T
i Θ̃i + (vi,(mi,2) − αi,1)(e(ri+mi+1),1)

TΘ̃i + b̂i,mi
zi,2

= (δi − p̂i ᾱi,1e(ri+mi+1),1)
TΘ̃i + b̂i,mi

zi,2, (23)

where

δi = [vi,(mi,2), vi,(mi−1,2), . . . , vi,(0,2), ξi,2 + Φi,1]
T. (24)

From (20)-(23), (19) can be written as

żi,1 = −ci,1zi,1 − li,1zi,1 − l∗i zi,1
(

f̄ i(yi)
)2
− λ∗i zi,1

(
h̄i(yi)

)2

+εi,2 + (δi − p̂iᾱi,1eri+mi+1,1)
TΘ̃i − bi,mi

ᾱi,1 p̃i + b̂i,mi
zi,2

+
N

∑
j=1

fij,1(t, yj) +
N

∑
j=1

hij,1(t, yj(t− τj(t))), (25)

where Θ̃i = Θi − Θ̂i, and e(ri+mi+1),1 ∈ �
ri+mi+1. We now consider the Lyapunov function

V1
i =

1
2
(zi,1)

2 +
1
2

Θ̃T
i Γ−1

i Θ̃i +
|bi,mi

|

2γ
′

i
( p̃i)

2 +
1

2l̄i,1
Vεi , (26)
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where Γi is a positive definite design matrix and γ
′

i is a positive design parameter. Examining
the derivative of V1

i gives

V̇1
i = zi,1żi,1 − Θ̃T

i Γ−1
i

˙̂Θi −
|bi,mi

|

γ
′

i
p̃i ˙̂pi +

1
2l̄i,1

V̇εi

≤ −ci,1(zi,1)
2 − li,1(zi,1)

2 − l∗i (zi,1)
2( f̄ i(zi,1)

)2
− λ∗i (zi,1)

2(h̄i(yi)
)2

−
1

2l̄i,1
εT

i εi + b̂i,mi
zi,1zi,2− |bi,mi

| p̃i
1
γ
′

i
[γ

′

isgn(bi,mi
)ᾱi,1zi,1 + ˙̂pi]

+Θ̃T
i Γ−1

i [Γi(δi − p̂iᾱi,1e(ri+mi+1),1)zi,1 −
˙̂Θi]

+(
N

∑
j=1

fij,1(t, yj) +
N

∑
j=1

hij,1(t, yj(t− τj(t))) + εi,2)zi,1

+
1

l̄i,1
N ‖ Pi ‖

2 (
‖

N

∑
j=1

hij(t, yj(t− τj(t))) ‖
2 +

N

∑
j=1
‖ fij(t, yj) ‖

2 )
. (27)

Then we choose

˙̂pi = −γ
′

isgn(bi,mi
)ᾱi,1zi,1, (28)

τi,1 =
(
δi − p̂iᾱi,1e(ri+mi+1),1

)
zi,1. (29)

Let li,1 = 3l̄i,1 and using Young’s inequality we have

− l̄i,1(zi,1)
2 +

N

∑
j=1

fij,1(t, yj)zi,1 ≤
N

4l̄i,1

N

∑
j=1
‖ fij,1(t, yj) ‖

2, (30)

−l̄i,1(zi,1)
2 +

N

∑
j=1

hij,1(t, yj(t− τj(t)))zi,1 ≤
N

4l̄i,1
‖

N

∑
j=1

hij,1(t, yj(t− τj(t))) ‖
2, (31)

−l̄i,1(zi,1)
2 + εi,2zi,1 −

1
4l̄i,1

εT
i εi ≤ −l̄i,1(zi,1)

2 + εi,2zi,1 −
1

4l̄i,1
(εi,2)

2

= −l̄i,1(zi,1 −
1

2l̄i,1
εi,2)

2 ≤ 0. (32)

Substituting (28)-(32) into (27) gives

V̇1
i ≤ −ci,1(zi,1)

2 −
1

4l̄i,1
εT

i εi − l∗i (zi,1)
2( f̄ i(yi)

)2
− λ∗i (zi,1)

2(h̄i(yi)
)2

+ b̂i,mi
zi,1zi,2

+Θ̃T
i (τi,1 − Γ−1

i
˙̂Θi) +

N
l̄i,1
‖ Pi ‖

2
N

∑
j=1
‖ fij(t, yj) ‖

2 +
N

4l̄i,1

N

∑
j=1
‖ fij,1(t, yj) ‖

2

+
N
l̄i,1
‖ Pi ‖

2
N

∑
j=1
‖ hij(t, yj(t− τj(t))) ‖

2 +
N

4l̄i,1
‖

N

∑
j=1

hij,1(t, yj(t− τj(t))) ‖
2 . (33)
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• Step q (q = 2, . . . , ρi, i = 1, . . . , N): Choose virtual control laws

αi,2 = −b̂i,mi
zi,1 −

(
ci,2 + li,2

(
∂αi,1

∂yi

)2
)

zi,2 + B̄i,2 +
∂αi,1

∂Θ̂i
Γiτi,2, (34)

αi,q = −zi,q−1−

(
ci,q + li,q

(
∂αi,q−1

∂yi

)2)
]zi,q + B̄i,q +

∂αi,q−1

∂Θ̂i
Γiτi,q

−
( q−1

∑
k=2

zi,k
∂αi,k−1

∂Θ̂i

)
Γi

∂αi,q−1

∂yi
δi, (35)

τi,q = τi,q−1−
∂αi,q−1

∂yi
δizi,q, (36)

where cq
i , li,q, q = 3, . . . , ρi are positive design parameters, and B̄i,q, q = 2, . . . , ρi denotes some

known terms and its detailed structure can be found in Krstic et al. (1995).
Then the local control and parameter update laws are finally given by

ui = αi,ρi
− vi,(mi,ρi+1), (37)

˙̂Θi = Γiτi,ρi
. (38)

Remark 4. The crucial terms l∗i zi,1
(

f̄ i(yi)
)2 in (21) and λ∗i zi,1

(
h̄i(yi)

)2 are proposed in the controller
design to compensate for the effects of interactions from other subsystems or the un-modelled part of its
own subsystem, and for the effects of time-delay functions, respectively. The detailed analysis will be
given in Section 4.

Remark 5. When going through the details of the design procedures, we note that in the
equations concerning żi,q, q = 1, 2, . . . , ρi, just functions ∑N

j=1 fij,1(t, yj) from the interactions and

∑N
j=1 hij,1(t, yj(t− τj(t))) appear, and they are always together with εi,2. This is because only ẏi from

the plant model (1) was used in the calculation of α̇i,q for steps q = 2, . . . , ρi.

4. Stability analysis

In this section, the stability of the overall closed-loop system consisting of the interconnected
plants and decentralized controllers will be established.
Now we define a Lyapunov function of decentralized adaptive control system as

Vi =
ρi

∑
q=1

(1
2
(zi,q)

2 +
1

2l̄i,q
εT

i Piεi

)
+

1
2

Θ̃T
i Γ−1

i Θ̃i +
|bi,mi

|

2γ
′

i
p̃2

i . (39)

From (12), (20), (33), (35)-(38), and (49), the derivative of Vi in (39) satisfies

V̇i ≤ −
ρi

∑
q=1

ci,q(zi,q)
2 − l∗i (zi,1)

2( f̄ i(yi))
2 − λ∗i (zi,1)

2 (h̄i (yi)
)2

+
ρi

∑
q=1

1
l̄i,q

N ‖ Pi ‖
2

⎛
⎝ N

∑
j=1
‖ hij(t, yj(t− τj)) ‖

2 +
N

∑
j=1
‖ fij(t, yj) ‖

2

⎞
⎠
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+
1

4l̄i,1

⎛
⎝N

N

∑
j=1
‖ fij,1(t, yj) ‖

2 +N
N

∑
j=1
‖ hij,1(t, yj(t− τj)) ‖

2

⎞
⎠

−
1

4l̄i,1
εT

i εi +
ρi

∑
q=2

[
−li,q

(
∂αi,q−1

∂yi

)2

(zi,q)
2 −

1
2l̄i,q

εT
i εi

+
∂αi,q−1

∂yi

⎛
⎝ N

∑
j=1

fij,1(t, yj) +
N

∑
j=1

hij,1

(
t, yj(t− τj)

)
+ εi,2

⎞
⎠ zi,q

⎤
⎦ . (40)

Using Young’s inequality and let li,q = 3l̄i,q, we have

− l̄i,q

(
∂αi,q−1

∂yi

)2

(zi,q)
2 +

∂αi,q−1

∂yi

N

∑
j=1

fij,1(t, yj)zi,q ≤
N

4l̄i,q

N

∑
j=1
‖ fij,1(t, yj) ‖

2, (41)

−l̄i,q

(
∂αi,q−1

∂yi

)2

(zi,q)
2 +

∂αi,q−1

∂yi
εi,2zi,q −

1
4l̄i,q

εT
i εi ≤ 0, (42)

− l̄i,q

(
∂αi,q−1

∂yi

)2

(zi,q)
2 +

∂αi,q−1

∂yi

N

∑
j=1

hij,1(t, yj(t− τj))zi,q

≤
N

4l̄i,q

N

∑
j=1
‖ hij,1(t, yj(t− τj)) ‖

2 . (43)

Then from (40),

V̇i ≤ −
ρi

∑
q=1

ci,q(zi,q)
2 −

ρi

∑
q=1

1
4l̄i,q

εT
i εi − l∗i (zi,1)

2( f̄ i(yi)
)2
− λ∗i (zi,1)

2(h̄i(yi(t)
)2

+
ρi

∑
q=1

N
4l̄i,q

⎛
⎝4 ‖ Pi ‖

2
N

∑
j=1
‖ fij(t, yj) ‖

2 +
N

∑
j=1
‖ fij,1(t, yj) ‖

2

⎞
⎠

+
ρi

∑
q=1

N
4l̄i,q

⎛
⎝4 ‖ Pi ‖

2
N

∑
j=1
‖ hij(t, yj(t− τj)) ‖

2 +
N

∑
j=1
‖ hij,1(t, yj(t− τj)) ‖

2

⎞
⎠ . (44)

From Assumptions 3 and 4, we can show that

ρi

∑
q=1

N
4l̄i,q

⎛
⎝4 ‖ Pi ‖

2
N

∑
j=1
‖ fij(t, yj) ‖

2 +
N

∑
j=1
‖ fij,1(t, yj) ‖

2

⎞
⎠ ≤

N

∑
j=1

γij
(

f̄ j(yj)
)2
(yj)

2, (45)

ρi

∑
q=1

N
4l̄i,q

⎛
⎝4 ‖ Pi ‖

2
N

∑
j=1
‖ hij(t, yj(t− τj)) ‖

2 +
N

∑
j=1
‖ hij,1(t, yj(t− τj)) ‖

2

⎞
⎠

≤
N

∑
j=1

ιij
(
h̄j(yj)(t− τj)

)2
(yj(t− τj))

2, (46)
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where γij = O(γ̄2
ij) indicates the coupling strength from the jth subsystem to the ith subsystem

depending on l̄i,q, ‖ Pi ‖ and O(γ̄2
ij) denotes that γij and O(γ̄2

ij) are in the same order

mathematically, and ιij = O(ῑ2ij).
Then the derivative of Vi is given as

V̇i ≤ −
ρi

∑
q=1

ci,q(zi,q)
2 −

ρi

∑
q=1

1
4l̄i,q

εT
i εi − l∗i (zi,1)

2( f̄ i(yi)
)2
− λ∗i (zi,1)

2(h̄i(yi(t)
)2

+
N

∑
j=1

γij

(
f̄ j(yj)yj

)2
+

N

∑
j=1

ιij

(
h̄j(yj)(t− τj)yj(t− τj)

)2
. (47)

To tackle the unknown time-delay problem, we introduce the following Lyapunov-Krasovskii
function

Wi =
N

∑
j=1

ιij

1− τ̄j

∫ t

t−τj(t)

(
h̄1

j
(
yj(s)

)
yj(s)

)2
ds. (48)

The time derivative of Wi is given by

Ẇi ≤
N

∑
j=1

(
ιij

1− τ̄j

[
h̄j
(
yj(t)

)
yj(t)

]2
− ιij

[
h̄j
(
yj(t− τj(t))

)
yj(t− τj(t))

]2
)

. (49)

Now define a new control Lyapunov function for each local subsystem

Vρ
i = Vi + Wi

=
ρi

∑
q=1

( 1
2
(zi,q)

2 +
1

2l̄i,q
εT

i Piεi

)
+

1
2

Θ̃T
i Γ−1

i Θ̃i +
|bi,mi

|

2γ
′

i
p̃2

i

+
N

∑
j=1

ιij

1− τ̄j

∫ t

t−τj(t)

(
h̄1

j
(
yj(s)

)
yj(s)

)2
. (50)

Therefore, the derivative of Vρ
i

V̇ρ
i ≤ −

ρi

∑
q=1

ci,q(zi,q)
2 −

ρi

∑
q=1

1
4l̄i,q

εT
i εi − l∗i

(
f̄ i(yi)zi,1

)2
− λ∗i

(
h̄i(yi(t)zi,1

)2

+
N

∑
j=1

γij

(
f̄ j(yj)yj

)2
+

N

∑
j=1

ιij

1− τ̄j

(
h̄j(yj)yj

)2
. (51)

Clearly there exists a constant γ∗ij such that for each γij satisfying γij ≤ γ∗ij, and

l∗i ≥
N

∑
j=1

γji i f l∗i ≥
N

∑
j=1

γ∗ji. (52)

Constant γ∗ij stands for a upper bound of γij.
Simialy, there exists a constant ι∗ij such that for each ιij satisfying ιij ≤ ι∗ij, and

λ∗i ≥
N

∑
j=1

ι ji
1

1− τ̄i
i f λ∗i ≥

N

∑
j=1

ι∗ji
1

1− τ̄i
. (53)
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Now we define a Lyapunov function of overall system

V =
N

∑
i=1

Vρ
i . (54)

Now taking the summation of the last four terms in (51) and using (52) and (53), we get

N

∑
i=1

⎡
⎣−l∗i

(
f̄ i(yi)zi,1

)2
− λ∗i

(
h̄i(yi(t)zi,1

)2
+

N

∑
j=1

γij

(
f̄ j(yj)yj

)2
+

N

∑
j=1

ιij

1− τ̄j

(
h̄j(yj)yj

)2
⎤
⎦

=
N

∑
i=1

⎡
⎣−

⎛
⎝(l∗i −

N

∑
j=1

γji

⎞
⎠(

f̄ i(yi)yi
)2
−

⎛
⎝λ∗i −

N

∑
j=1

ι ji

1− τ̄i

⎞
⎠(

h̄i(yi)yi
)2

⎤
⎦ ≤ 0. (55)

Therefore,

V̇ ≤ −
N

∑
i=1

ρi

∑
q=1

ci,q(zi,q)
2 −

N

∑
i=1

ρi

∑
q=1

1
4l̄i,q

εT
i εi ≤ 0. (56)

This shows that V is uniformly bounded. Thus zi,1, . . . , zi,ρi
, p̂i, Θ̂i, εi are bounded. Since zi,1 is

bounded, yi is also bounded. Because of the boundedness of yi, variables vi,j, ξi,0 and Ξi are
bounded as Ai,0 is Hurwitz. Following similar analysis to Wen & Zhou (2007), we can show
that all the states associated with the zero dynamics of the ith subsystem are bounded under
Assumption 2. In conclusion, boundedness of all signals is ensured as formally stated in the
following theorem.

Theorem 1. Consider the closed-loop adaptive system consisting of the plant (1) under Assumptions
1-4, the controller (37), the estimator (28) and (38), and the filters (7)-(9). There exist a constant γ∗ij
such that for each constant γij satisfying γij ≤ γ∗ij and ιij satisfying ιij ≤ ι∗ij i, j = 1, . . . , N, all the
signals in the system are globally uniformly bounded.

We now derive a bound for the vector zi(t) where zi(t) = [zi,1, zi,2, . . . , zi,ρi
]T. Firstly, the

following definitions are made.

c0
i = min1≤q≤ρi

ci,q (57)

‖ zi ‖2 =

√∫ ∞

0
‖ zi(t) ‖2 dt. (58)

From (56), the derivative of V can be given as

V̇ ≤ −c0
i ‖ zi ‖

2 . (59)

Since V is nonincreasing, we obtain

‖ zi ‖
2
2 =

∫ ∞

0
‖ zi(t) ‖

2 dt ≤
1
c0

i

(
V(0)−V(∞)

)
≤

1
c0

i
V(0). (60)

Similarly, the output yi is bounded by

‖ yi ‖
2
2 =

∫ ∞

0
(yi(t))

2dt ≤
1

ci,1
V(0). (61)
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Theorem 2. The L2 norm of the state zi is bounded by

‖ zi(t) ‖2 ≤
1√
c0

i

√
V(0), (62)

‖ yi ‖
2
2 ≤

1
√

ci,1

√
V(0). (63)

Remark 6. Regarding the output bound in (63), the following conclusions can be drawn by noting
that Θ̃i(0), p̃i(0), εi(0) and yi(0) are independent of ci,1, Γi, γ

′

i.
• The transient output performance in the sense of truncated norm given in (62) depends on the initial
estimation errors Θ̃i(0), p̃i(0) and εi(0). The closer the initial estimates to the true values, the better
the transient output performance.
• This bound can also be systematically reduced down to a lower bound by increasing Γi, γ

′

i, ci,1 .

5. Simulation example

We consider the following interconnected system with two subsystems.

ẋ1 =

[
0 1
0 0

]
x1 +

[
2y1 y2

1
0 y1

]
θ1 +

[
0
b1

]
u1 + f1 + h1, y1 = x1,1 (64)

ẋ2 =

[
0 1
0 0

]
x2 +

[
0 0
y2 1 + y2

]
θ2 +

[
0
b2

]
u2 + f2 + h2, y2 = x2,1, (65)

where θ1 = [1, 1]T,θ2 = [0.5, 1]T, b1 = b2 = 1, the nonlinear interaction terms f1 = [0, y2
2 +

sin(y1)]
T,f2 = [0.2y2

1 + y2, 0]T, the external disturbance h1 = 0, h2 = [y1(t − τ1), y2(t −
τ2(t)]T. The parameters and the interactions are not needed to be known. The objective is to
make the outputs y1 and y2 converge to zero.
The design parameters are chosen as c1,1 = c1,2 = 2, c2,1 = c2,2 = 3, l1,1 = l1,2 = 1, l2,1 =

l2,2 = 2, l∗1 = l∗2 = 5, λ∗1 = λ∗2 = 5, γ
′

1 = 2, γ
′

2 = 2, Γ1 = 0.5I3, Γ2 = I3, li,p = li,Θ = 1,
p1,0 = p2,0 = 1, Θ1,0 = [1, 1, 1]T, Θ2,0 = [0.6, 1, 1]T. The initials are set as y1(0) = 0.5, y2(0) =
1, Θ̂1(0) = [0.5, 0.8, 0.8]T, Θ̂2(0) = [0.6, 0.8, 0.8]T. The block diagram in Figure 1 shows the
proposed control structure for each subsystem. The input signals to the designed ith local
adaptive controller are yi, ξi,0, Ξi, vi,0. Figures 2-3 show the system outputs y1 and y2. Figures
4-5 show the system inputs u1 and u2(t). All the simulation results verify that our proposed
scheme is effective to cope with nonlinear interactions and time-delay.

6. Conclusion

In this chapter, a new scheme is proposed to design totally decentralized adaptive
output stabilizer for a class of unknown nonlinear interconnected system in the presence
of time-delays. Unknown time-varying delays are compensated by using appropriate
Lyapunov-Krasovskii functionals. It is shown that the designed decentralized adaptive
controllers can ensure the stability of the overall interconnected systems. An explicit bound
in terms of L2 norms of the output is also derived as a function of design parameters. This
implies that the transient the output performance can be adjusted by choosing suitable design
parameters.
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Fig. 1. Control block diagram.
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1. Introduction

Time delay systems are widely encountered in many real applications, such as chemical
processes and communication networks. Hence, the problem of controlling time-delay
systems has been investigated by many researchers in the past few decades. It has been found
that controlling time-delay systems can be a challenging task, especially in the presence of
uncertainties and parameter variations. Several techniques have been studied in the analysis
and design of time delay systems with parameter uncertainties. Such techniques include
robust control Mahmoud (2000; 2001), H∞ control Fridman & Shaked (2002); Mahmoud &
Zribi (1999); Yang & Wang (2001); Yang et al. (2000), and sliding mode control Choi (2001;
2003); Edwards et al. (2001); Gouaisbaut et al. (2002); Xia & Jia (2003). For time-delay systems
with parametric uncertainties Nounou & Mahmoud (2006); Nounou et al. (2007), adaptive
control schemes have been developed. The main contribution in Nounou & Mahmoud
(2006) is the development of two delay-independent adaptive controllers. The first one
is an adaptive state feedback controller when no uncertainties appear in the controller’s
state feedback gain. This adaptive controller stabilizes the closed-loop system in the sense
of uniform ultimate boundedness. The second controller is an adaptive state feedback
controller when uncertainties also appear in the controller’s state feedback gain. This adaptive
controller guarantees asymptotic stabilization of the closed-loop system. In Nounou et al.
(2007), the authors focused on the stabilization of the class of time-delay systems with
parametric uncertainties and time varying state delay when the states are not assumed to
be measurable. For this class of systems, the authors developed two controllers. The first
one is a robust output feedback controller when a sliding-mode observer is used to estimate
the states of the system, and the second one is an adaptive output feedback controller
when a sliding-mode observer is used to estimate the states of the system, such that the
uncertainties also appear in the gain of the sliding-mode observer. In the case where uncertain
time-delay systems include a nonlinear perturbation, several adaptive control approaches
have been introduced Cheres et al. (1989); Wu (1995; 1996; 1997; 1999; 2000). In Cheres et al.
(1989); Wu (1996), the authors developed state feedback controllers when the state vector is
available for measurement and the upper bound on the delayed state perturbation vector
is known. For the case where the upper bound of the nonlinear perturbation is known,
more stabilizing controllers with stability conditions have been derived in Wu (1995; 1997).
However, in many real control problems, the bounds of the uncertainties are unknown. For
such a class of systems, the author in Wu (1999) has developed a continuous time state
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feedback adaptive controller to guarantee uniform ultimate boundedness for systems with
partially known uncertainties. For a class of systems with multiple uncertain state delays
that are assumed to satisfy the matching condition, an adaptive law that guarantees uniform
ultimate boundedness has been introduced in Wu (2000). In all of the papers discussed above,
the authors investigated delay-independent stabilization and control of time-delay systems.
Delay-dependent stabilization and H∞ control of time-delay systems have been studied
in De Souza & Li (1999); Fridman (1998); Fridman & Shaked (2003); He et al. (1998); Lee et al.
(2004); Mahmoud (2000); Wang (2004). In Mahmoud (2000), the author discussed stabilization
conditions and analyzed passivity of continuous and discrete time-delay systems with
time-varying delay and norm-bounded parameter uncertainties. The results in Mahmoud
(2000) have been extended in Nounou (2006) to consider designing delay-dependent adaptive
controllers for a class of uncertain time-delay systems with time-varying delays in the
presence of nonlinear perturbation. In Nounou (2006), the nonlinear perturbation is assumed
to be bounded by a weighted norm of the state vector, and for this problem adaptive
controllers have been developed for the two cases where the upper bound of the weight is
assumed to be known and unknown.
An inherent assumption in the design of all of the above control algorithms is that
the controller will be implemented perfectly. Here, the results in Nounou (2006) are
extended to investigate the resilient control problem Haddad & Corrado (1997; 1998); Keel
& Bhattacharyya (1997), where perturbation in controller state feedback gain is considered.
Here, It is assumed that the nonlinear perturbation is bounded by a weighted norm of
the state such that the weight is a positive constant, and the norm of the uncertainty of
the state feedback gain is assumed to be bounded by a positive constant. Under these
assumptions, adaptive controllers are developed for all combinations when the upper bound
of the nonlinear perturbation weight is known and unknown, and when the value of the
upper bound of the state feedback gain perturbation is known and unknown. For all these
cases, asymptotically stabilizing adaptive controllers are derived.
This chapter is organized as follows. In Section 2, the problem statement is defined. Then,
in Section 3, the main stability results are presented. In Section 4, the design schemes are
illustrated via a numerical example, and finally in Section 5, some concluding remarks are
outlined.
Notations and Facts: In the sequel, the Euclidean norm is used for vectors. We use W�, W−1,
and ||W|| to denote, respectively, the transpose of, the inverse of, and the induced norm of
any square matrix W. We use W > 0 (≥,<,≤ 0) to denote a symmetric positive definite
(positive semidefinite, negative, negative semidefinite) matrix W, and I to denote the n × n
identity matrix. The symbol • will be used in some matrix expressions to induce a symmetric
structure, that is if the matrices L = L� and R = R� of appropriate dimensions are given,
then [

L N
• R

]
=

[
L N
N� R

]
.

Now, we introduce the following facts that will be used later on to establish the stability
results.
Fact 1: Mahmoud (2000) Given matrices Σ1 and Σ2 with appropriate dimensions, it follows
that

Σ1Σ2 + Σ�2 Σ�1 ≤ α−1 Σ1Σ�1 + α Σ�2 Σ2, ∀ α > 0.
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Fact 2 (Schur Complement): Boukas & Liu (2002); Mahmoud (2000) Given constant matrices Ω1,
Ω2, Ω3 where Ω1 = Ω�

1 and 0 < Ω2 = Ω�
2 then Ω1 + Ω�

3 Ω−1
2 Ω3 < 0 if and only if[

Ω1 Ω�
3

Ω3 −Ω2

]
< 0 or

[ −Ω2 Ω3
Ω�

3 Ω1

]
< 0.

2. Problem statement

Consider the class of dynamical systems with state delay

ẋ(t) = Aox(t) + Adx(t− τ) + Bou(t) + E (x(t), t) (1)

where x(t) ∈ �n is the state vector, u(t) ∈ �m is the control input, E (x(t), t) : �n ×� → �n

is an unknown continuous vector function that represents a nonlinear perturbation, and τ
is some unknown time-varying state delay factor satisfying 0 ≤ τ ≤ τ+, where the bound
τ+ is a known constant. The matrices Ao, Ad, and Bo are known real constant matrices
of appropriate dimensions. The nonlinear perturbation function is defined to satisfy the
following assumption.

Assumption 2.1. The nonlinear perturbation function E (x(t), t) satis�es the following inequality

||E (x(t), t) || ≤ θ∗ ||x(t)||, (2)

where θ∗ is some positive constant.

In this chapter, resilient delay-dependent adaptive stabilization results are established for the
system (1) when uncertainties appear in the state feedback gain of the following control law:

u(t) = (K+ ΔK) x(t) + μ(t)Ix(t), (3)

where I ∈ �m×n is a matrix whose elements are all ones, μ(t) ∈ � is adapted such that
closed-loop asymptotic stabilization is guaranteed, K ∈ �m×n is a state feedback gain, and
ΔK(t) ∈ �m×n is the time varying uncertainty of the state feedback gain that satisfies the
following assumption.

Assumption 2.2. The uncertainty of the state feedback gain satis�es the following inequality

||ΔK(t)|| ≤ ρ∗, (4)

where ρ∗ is some positive constant.

Before we proceed, we start be expressing the delayed state as Mahmoud (2000)

x(t− τ) = x(t)−
∫ 0

−τ
ẋ(t+ s)ds (5)

= x(t)−
∫ 0

−τ
[Ao x(t+ s) + Ad x(t− τ + s) + Bo u(t+ s)− E (x(t+ s), t+ s)] ds

Hence, if we define Aod = Ao + Ad, then the system (1) can be expressed as

ẋ(t) = Aod x(t) + Ad η(t) + Bou(t) + E (x(t), t) , (6)

η(t) = −
∫ 0

−τ
[Ao x(t+ s) + Ad x(t− τ + s) + Bo u(t+ s) + E (x(t+ s), t+ s)] ds.

Here, resilient delay-dependent stabilization results are established for the system (6)
considering the following cases:
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1. The nonlinear perturbation function satisfies Assumption 2.1 such that θ∗ is assumed
to be a known positive constant, and the uncertainty of the state feedback gain satisfies
Assumption 2.2 such that ρ∗ is assumed to be a known positive constant.

2. The nonlinear perturbation function satisfies Assumption 2.1 such that θ∗ is assumed
to be a known positive constant, and the uncertainty of the state feedback gain satisfies
Assumption 2.2 such that ρ∗ is assumed to be an unknown positive constant.

3. The nonlinear perturbation function satisfies Assumption 2.1 such that θ∗ is assumed to
be an unknown positive constant, and the uncertainty of the state feedback gain satisfies
Assumption 2.2 such that ρ∗ is assumed to be a known positive constant.

4. The nonlinear perturbation function satisfies Assumption 2.1 such that θ∗ is assumed to
be an unknown positive constant, and the uncertainty of the state feedback gain satisfies
Assumption 2.2 such that ρ∗ is assumed to be an unknown positive constant.

3. Main results

In the sequel, the main design results will be presented.

3.1 Adaptive control when both θ∗ and ρ∗ are known
Here, we wish to stabilize the system (6) considering the control law (3) when both θ∗ and ρ∗
are known. Let us define z(t) = μ(t)x(t), and let the Lyapunov-Krasovskii functional for the
transformed system (6) be selected as:

Va(x)
Δ
= V1(x) + V2(x) + V3(x) + V4(x) + V5(x) + V6(x) + V7(x) + V8(x), (7)

where

V1(x) = x�(t)Px(t), (8)

V2(x) = r1

∫ 0

−τ

∫ t

t+s
x�(α)A�o Aox(α)dαds, (9)

V3(x) = r2

∫ 0

−τ

∫ t

t+s−τ
x�(α) A�d Ad x(α) dα ds, (10)

V4(x) = r3

∫ 0

−τ

∫ t

t+s
x�(α) K�B�o BoK x(α) dα ds, (11)

V5(x) = r4

∫ 0

−τ

∫ t

t+s
x�(α) ΔK�(t)B�o BoΔK(t) x(α) dα ds, (12)

V6(x) = r5

∫ 0

−τ

∫ t

t+s
z�(α) I�B�o BoI z(α) dα ds, (13)

V7(x) = r6

∫ 0

−τ

∫ t

t+s
E�(x, α) E(x, α) dα ds, (14)

V8(x) = μ2(t), (15)

where r1 > 0, r2 > 0, r3 > 0, r4 > 0, r5 > 0 and r6 > 0 are positive scalars, and P = P� ∈
�n×n > 0. It can be shown that the time derivative of the Lyapunov-Krasovskii functional is

V̇a(x) = V̇1(x) + V̇2(x) + V̇3(x) + V̇4(x) + V̇5(x) + V̇6(x) + V̇7(x) + V̇8(x), (16)
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where

V̇1(x) = x�(t)Pẋ(t) + ẋ�(t)Px(t), (17)

V̇2(x) = τr1x
�(t)A�o Aox(t)− r1

∫ 0

−τ
x�(t+ s)A�o Aox(t+ s)ds, (18)

V̇3(x) = τr2x
�(t)A�d Adx(t)− r2

∫ 0

−τ
x�(t+ s− τ)A�d Adx(t+ s− τ)ds, (19)

V̇4(x) = τr3x
�(t)K�B�o BoKx(t)− r3

∫ 0

−τ
x�(t+ s)K�B�o BoKx(t+ s)ds, (20)

V̇5(x) = τr4x
�(t)ΔK(t)�B�o BoΔK(t)x(t)

−r4

∫ 0

−τ
x�(t+ s)ΔK�(t+ s)B�o BoΔK(t+ s)x(t+ s)ds, (21)

V̇6(x) = τr5z
�(t)I�B�o BoIz(t)− r5

∫ 0

−τ
z�(t+ s)I�B�o BoIz(t+ s)ds, (22)

V̇7(x) = τr6 E�(x, t) E(x, t)− r6

∫ 0

−τ
E�(x, t+ s) E(x, t+ s) ds, (23)

V̇8(x) = 2 μ(t) μ̇(t). (24)

The next Theorem provides the main results for this case.

Theorem 1: Consider system (6). If there exist matrices 0 < X = X� ∈ �n×n, Y ∈ �m×n,
Z ∈ �n×n, and scalars ε1 > 0, ε2 > 0, ε3 > 0, ε4 > ε, ε5 > ε and ε6 > ε (where ε is an arbitrary
small positive constant) such that the following LMI⎡

⎢⎢⎢⎢⎣
AodX +X Aod + BoY + Y�B�o

+τ+ (ε1 + ε2 + ε3 + ε4 + ε5 + ε6) AdA�d
τ+X A�o τ+X A�d τ+Z

• −τ+ε1 I 0 0
• • −τ+ε2 I 0
• • • −τ+ε3 I

⎤
⎥⎥⎥⎥⎦ < 0, (25)

has a feasible solution, and K = YX−1, and μ(t) is adapted subject to the adaptive law

μ̇(t) = Proj
{

α1 sgn (μ(t)) ||x(t)||2 + α2 μ(t) ||x(t)||2, μ(t)
}

, (26)

where Proj{·} Krstic et al. (1995) is applied to ensure that |μ(t)| ≥ 1 as follows

μ(t) =

⎧⎨
⎩

μ(t) if |μ(t)| ≥ 1
1 if 0 ≤ μ(t) < 1
−1 if −1 < μ(t) < 0,

and the adaptive law parameters are selected such that

α1 < − 1
2

[
τ+r4 (ρ

∗)2 ||B�o Bo||+ τ+r6 (θ
∗)2 + 2ρ∗||PBo||+ 2||PBo||+ 2θ∗||P||

]
, (27)

and

α2 < − 1
2

τ+r5||I�B�o BoI||, (28)

then the control law (3) will guarantee asymptotic stabilization of the closed-loop system.
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Proof As shown in (16), the time derivative of Va(x) is

V̇a(x) = V̇1(x) + V̇2(x) + V̇3(x) + V̇4(x) + V̇5(x) + V̇6(x) + V̇7(x) + V̇8(x),

= x�(t)Pẋ(t) + ẋ�(t)Px(t) + V̇2(x) + V̇3(x) + V̇4(x) + V̇5(x) + V̇6(x)

+ V̇7(x) + V̇8(x). (29)

Using the system equation defined in (6) and the control law (3), we have

V̇a(x) = x�(t)
[
PAod + A�odP+ PBoK+ K�B�o P

]
x(t)

−2x�(t)PAd

∫ 0

−τ
Aox(t+ s)ds− 2x�(t)PAd

∫ 0

−τ
Adx(t− τ + s)ds

−2x�(t)PAd

∫ 0

−τ
BoKx(t+ s)ds− 2x�(t)PAd

∫ 0

−τ
BoΔK(t+ s)x(t+ s)ds

−2x�(t)PAd

∫ 0

−τ
μ(t+ s)BoIx(t+ s)ds− 2x�(t)PAd

∫ 0

−τ
E(x, t+ s)ds

+2x�(t)PBoΔK(t)x(t) + 2μ(t)x�(t)PBoIx(t) + 2x�(t)PE(x, t)

+ V̇2(x) + V̇3(x) + V̇4(x) + V̇5(x) + V̇6(x) + V̇7(x) + V̇8(x). (30)

By applying Fact 1, we have

− 2x�(t)PAd

∫ 0

−τ
Aox(t+ s)ds ≤ r−1

1

∫ 0

−τ
x�(s)PAdA

�
d Px(s)ds

+r1

∫ 0

−τ
x�(t+ s)A�o Aox(t+ s)ds

≤ τ+r−1
1 x�(t)PAdA

�
d Px(t)

+r1

∫ 0

−τ
x�(t+ s)A�o Aox(t+ s)ds, (31)

where r1 is a positive scalar. Similarly, if r2, r3 and r4 are positive scalars, we have

− 2x�(t)PAd

∫ 0

−τ
Adx(t− τ + s)ds ≤ τ+r−1

2 x�(t)PAdA
�
d Px(t)

+r2

∫ 0

−τ
x�(t− τ + s)A�d Adx(t− τ + s)ds, (32)

− 2x�(t)PAd

∫ 0

−τ
BoKx(t+ s)ds ≤ τ+r−1

3 x�(t)PAdA
�
d Px(t)

+r3

∫ 0

−τ
x�(t+ s)K�B�o BoKx(t+ s)ds, (33)

and

−2x�(t)PAd
∫ 0
−τ BoΔK(t+ s)x(t+ s)ds ≤ τ+r−1

4 x�(t)PAdA�d Px(t) (34)

+r4
∫ 0
−τ x�(t+ s)ΔK�(t+ s)B�o BoΔK(t+ s)x(t+ s)ds.
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Now, let r5 be a positive scalar, then using Fact 1 we have

−2x�(t)PAd

∫ 0

−τ
μ(t+ s)BoIx(t+ s)ds = −2x�(t)PAd

∫ 0

−τ
BoIz(t+ s)ds

≤ τ+r−1
5 x�(t)PAdA

�
d Px(t) + r5

∫ 0

−τ
z�(t+ s)I�B�o BoIz(t+ s)ds. (35)

Also, if r6 is a positive scalar, then using Fact 1 we have

− 2x�(t)PAd

∫ 0

−τ
E(x, t+ s)ds ≤ τ+r−1

6 x�(t)PAdA�d Px(t)

+r6

∫ 0

−τ
E�(x, t+ s)E(x, t+ s)ds. (36)

It is known that
2μ(t)x�(t)PBoIx(t) ≤ 2||PBoI|| |μ(t)| ||x(t)||2. (37)

Also, using Assumption 2.1, it can be shown that

2x�(t)PE(x, t) ≤ 2||P|| θ∗ ||x(t)||2. (38)

Using equations (31)- (38) and equations (17)- (24) (with the fact that 0 ≤ τ ≤ τ+) in (30), we
have

V̇a(x) ≤ x�(t)Ξx(t) + τ+r4x
�(t)ΔK�(t)B�o BoΔK(t)x(t)

+τ+r5z
�(t)I�B�o BoIz(t) + τ+r6E

�(x, t)E(x, t) + 2ρ∗||PBo|| ||x(t)||2
+2||PBoI|| |μ(t)| ||x(t)||2 + 2θ∗||P|| ||x(t)||2 + 2 μ(t) μ̇(t). (39)

where

Ξ = PAod + A�odP+ PBoK+ K�B�o P+ τ+r1A
�
o Ao + τ+r2A

�
d Ad + τ+r3BoKK�B�o

+τ+
(
r−1

1 + r−1
2 + r−1

3 + r−1
4 + r−1

5 + r−1
6

)
PAdA

�
d P. (40)

To guarantee that x�(t)Ξx(t) < 0, it sufficient to show that Ξ < 0. Let us introduce the
linearizing terms, X = P−1, Y = KX , and Z = X BoK. Also, let ε1 = r−1

1 , ε2 = r−1
2 , ε3 = r−1

3 ,
ε4 = r−1

4 , ε5 = r−1
5 and ε6 = r−1

6 . Now, by pre-multiplying and post-multiplying Ξ by X and
invoking the Schur complement, we arrive at the LMI (25) which guarantees that Ξ < 0, and
consequently x�(t)Ξx(t) < 0. Now, we need to show that the remaining terms of (39) are
negative definite. Using the definition of z(t) = μ(t)x(t), we know that

τ+r5z
�(t)I�B�o BoIz(t) ≤ τ+r5 ||I�B�o BoI|| μ2(t) ||x(t)||2. (41)

Also, using Assumptions 2.1 and 2.2 , we have

τ+r6E
�(x, t)E(x, t) ≤ τ+r6 (θ

∗)2 ||x(t)||2, (42)

and

τ+r4x
�(t)ΔK�(t)B�o BoΔK(t)x(t) ≤ τ+r4 (ρ

∗)2 ||B�o Bo|| ||x(t)||2. (43)
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Now, using (41)- (43), the adaptive law (26), and the fact that |μ(t)| ≥ 1, equation (39) becomes

V̇a(x) ≤ x�(t)Ξx(t) + τ+r4 (ρ
∗)2 ||B�o Bo || ||x(t)||2 + τ+r5 ||I�B�o BoI|| μ2(t) ||x(t)||2

+τ+r6 (θ
∗)2 ||x(t)||2 + 2ρ∗||PBo|| ||x(t)||2 + 2||PBoI|| |μ(t)| ||x(t)||2

+2θ∗||P|| ||x(t)||2 + 2α1 |μ(t)| ||x(t)||2 + 2α2 μ2(t) ||x(t)||2. (44)

It can be easily shown that by selecting α1 and α2 as in (27) and (28), we guarantee that

V̇a(x) ≤ x�(t)Ξx(t), (45)

where Ξ < 0. Hence, V̇a(x) < 0 which guarantees asymptotic stabilization of the closed-loop
system.

3.2 Adaptive control when θ∗ is known and ρ∗ is unknown
Here, we wish to stabilize the system (6) considering the control law (3) when θ∗ is known
and ρ∗ is unknown. Before we present the stability results for this case, let us define ρ̃(t) =
ρ̂(t)− ρ∗ , where ρ̂(t) is the estimate of ρ∗, and ρ̃(t) is error between the estimate and the true
value of ρ∗. Let the Lyapunov-Krasovskii functional for the transformed system (6) be selected
as:

Vb(x)
Δ
= Va(x) + V9(x), (46)

where Va(x) is defined in equations (7), and V9(x) is defined as

V9(x) = (1 + ρ∗) [ρ̃(t)]2 , (47)

where its time derivative is
V̇9(x) = 2 (1 + ρ∗) ρ̃(t) ˙̃ρ(t). (48)

Since ρ̃(t) = ρ̂(t)− ρ∗, then ˙̃ρ(t) = ˙̂ρ(t). Hence, equation (48) becomes

V̇9(x) = 2 (1 + ρ∗) [ρ̂(t)− ρ∗] ˙̂ρ(t). (49)

The next Theorem provides the main results for this case.

Theorem 2: Consider system (6). If there exist matrices 0 < X = X� ∈ �n×n, Y ∈ �m×n,
Z ∈ �n×n, and scalars ε1 > 0, ε2 > 0, ε3 > 0, ε4 > ε, ε5 > ε and ε6 > ε (where ε is an arbitrary
small positive constant) such that the LMI (25) has a feasible solution, and K = YX−1, and μ(t) and
ρ̂(t) are adapted subject to the adaptive laws

μ̇(t) = Proj
{
[β1 sgn (μ(t)) + β2 μ(t) + β3 sgn (μ(t)) ρ̂(t) ] ||x(t)||2, μ(t)

}
(50)

˙̂ρ(t) = γ ||x(t)||2, (51)

where Proj{·} Krstic et al. (1995) is applied to ensure that |μ(t)| ≥ 1 as follows:

μ(t) =

⎧⎨
⎩

μ(t) if |μ(t)| ≥ 1
1 if 0 ≤ μ(t) < 1
−1 if −1 < μ(t) < 0,

and the adaptive law parameters are selected such that β1 <

− 1
2

[
τ+r6 (θ

∗)2 + 2 ||PBoI|| + 2θ∗ ||P||
]
, β2 < − 1

2 τ+r5||I�B�o BoI||, γ > 1
2 τ+r4||B�o Bo||,
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β3 < −γ, and ρ̂(0) > 1, then the control law (3) will guarantee asymptotic stabilization of the
closed-loop system.

Proof The time derivative of Vb(x) is

V̇b(x) = V̇a(x) + V̇9(x). (52)

Following the steps used in the proof of Theorem 1 and using equation (49), it can be shown
that

V̇b(x) ≤ x�(t)Ξx(t) + τ+r4 (ρ
∗)2 ||B�o Bo|| ||x(t)||2 + τ+r5 ||I�B�o BoI|| μ2(t) ||x(t)||2

+τ+r6 (θ
∗)2 ||x(t)||2 + 2ρ∗||PBo|| ||x(t)||2 + 2||PBoI|| |μ(t)| ||x(t)||2

+2θ∗||P|| ||x(t)||2 + 2 μ(t) μ̇(t) + 2 (1 + ρ∗) [ρ̂(t)− ρ∗] ˙̂ρ(t), (53)

where Ξ is defined in equation (40). Using the linearization procedure and invoking the Schur
complement (as in the proof of Theorem 1), it can be shown that Ξ is guaranteed to be negative
definite whenever the LMI (25) has a feasible solution. Using the adaptive laws (50)- (51)
in (53) and the fact that |μ(t)| ≥ 1, we get

V̇b(x) ≤ x�(t)Ξx(t) + τ+r4 (ρ
∗)2 ||B�o Bo || ||x(t)||2 + τ+r5 ||I�B�o BoI|| μ2(t) ||x(t)||2

+τ+r6 (θ
∗)2 ||x(t)||2 + 2ρ∗||PBo|| ||x(t)||2

+2||PBoI|| |μ(t)| ||x(t)||2 + 2θ∗||P|| ||x(t)||2
+2β1 |μ(t)| ||x(t)||2 + 2β2 μ2(t) ||x(t)||2 + 2β3 ρ̂(t) |μ(t)| ||x(t)||2 + 2γρ̂(t) ||x(t)||2
−2γρ∗ ||x(t)||2− 2γρ∗ ρ̂(t) ||x(t)||2− 2γ (ρ∗)2 ||x(t)||2. (54)

Using the fact that |μ(t)| > 1 and arranging terms of equation (54), it can be shown

that V̇b(x) < 0 if we select β1 < − 1
2

[
τ+r6 (θ

∗)2 + 2 ||PBoI|| + 2θ∗ ||P||
]
, β2 <

− 1
2 τ+r5||I�B�o BoI||, and β3 < −γ, where γ needs to be selected to satisfy the following

two conditions:
γ >

1
2

τ+r4||B�o Bo||, (55)

and
2||PBo|| − 2γ + 2γρ̂(t) < 0. (56)

Hence, we need to select γ such that

γ > max
{

1
2

τ+r4||B�o Bo || ,
||PBo||

1− ρ̂(t)

}
. (57)

It is clear that when ρ̂(t) > 1, we only need to ensure that γ > 1
2 τ+r4||B�o Bo||. Note that from

equation (51), ρ̂(t) > 1 can be easily ensured by selecting ρ̂(0) > 1 and γ > 1
2 τ+r4||B�o Bo||

to guarantee that ρ̂(t) in equation (51) is monotonically increasing. Hence, we guarantee that

V̇b(x) ≤ x�(t) Ξ x(t), (58)

where Ξ < 0. Hence, V̇b(x) < 0 which guarantees asymptotic stabilization of the closed-loop
system.
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3.3 Adaptive control when θ∗ is unknown and ρ∗ is known
Here, we wish to stabilize the system (6) considering the control law (3) when θ∗ is unknown
and ρ∗ is known. Since θ∗ is unknown, let us define θ̃(t) = θ̂(t) − θ∗, where θ̂(t) is the
estimate of θ∗, and θ̃(t) is error between the estimate and the true value of θ∗. Also, let the
Lyapunov-Krasovskii functional for the transformed system (6) be selected as:

Vc(x)
Δ
= Va(x) + V10(x), (59)

where
V10(x) = (1 + θ∗)

[
θ̃(t)

]2 , (60)

where its time derivative is

V̇10(x) = 2 (1 + θ∗) θ̃(t) ˙̃θ(t),

= 2 (1 + θ∗)
[
θ̂(t)− θ∗

] ˙̂θ(t). (61)

The next Theorem provides the main results for this case.

Theorem 3: Consider system (6). If there exist matrices 0 < X = X� ∈ �n×n, Y ∈ �m×n,
Z ∈ �n×n, and scalars ε1 > 0, ε2 > 0, ε3 > 0, ε4 > ε, ε5 > ε and ε6 > ε (where ε is an arbitrary
small positive constant) such that the LMI (25) has a feasible solution, and K = YX−1, and μ(t) is
adapted subject to the adaptive laws

μ̇(t) = Proj
{

δ1 sgn (μ(t)) ||x(t)||2 + δ2 μ(t) ||x(t)||2 + δ3 sgn (μ(t)) θ̂(t) ||x(t)||2, μ(t)
}

,(62)

˙̂θ(t) = κ ||x(t)||2, (63)

where Proj{·} Krstic et al. (1995) is applied to ensure that |μ(t)| ≥ 1 as follows

μ(t) =

⎧⎨
⎩

μ(t) if |μ(t)| ≥ 1
1 if 0 ≤ μ(t) < 1
−1 if −1 < μ(t) < 0,

and the adaptive law parameters are selected such that δ1 <

−
[
||PBoI||+ τ+r4 (ρ

∗)2 ||B�o Bo||+ ρ∗||PBo||
]
, δ2 < − 1

2 τ+r5||I�B�o BoI||, δ3 < −κ,

κ > 1
2 τ+r6 and θ̂(0) > 1, then the control law (3) will guarantee asymptotic stabilization of the

closed-loop system.

Proof The time derivative of Vc(x) is

V̇c(x) = V̇a(x) + V̇10(x). (64)

Following the steps used in the proof of Theorem 1 and using equation (61), it can be shown
that

V̇c(x) ≤ x�(t)Ξx(t) + τ+r4x
�(t)ΔK�(t)B�o BoΔK(t)x(t) + τ+r5z

�(t)I�B�o BoIz(t)
+τ+r6E

�(x, t)E(x, t) + 2ρ∗||PBo|| ||x(t)||2 + 2||PBoI|| |μ(t)| ||x(t)||2
+2θ∗||P|| ||x(t)||2 + 2 μ(t) μ̇(t) + 2 (1 + θ∗)

[
θ̂(t)− θ∗

] ˙̂θ(t), (65)
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where Ξ is defined in equation (40). Using the linearization procedure and invoking the
Schur complement (as in the proof of Theorem 1), it can be shown that Ξ is guaranteed to
be negative definite whenever the LMI (25) has a feasible solution. Now, we need to show
that the remaining terms of (65) are negative definite. Using the definition of z(t) = μ(t)x(t),
we know that

τ+r5z
�(t)I�B�o BoIz(t) ≤ τ+r5 ||I�B�o BoI|| μ2(t) ||x(t)||2. (66)

Also, using Assumptions 2.1 and 2.2 , we have

τ+r6E
�(x, t)E(x, t) ≤ τ+r6 (θ

∗)2 ||x(t)||2, (67)

and

τ+r4x
�(t)ΔK�(t)B�o BoΔK(t)x(t) ≤ τ+r4 (ρ

∗)2 ||B�o Bo|| ||x(t)||2. (68)

Now, using (66)- (68), the adaptive laws (62)- (63), and the fact that |μ(t)| ≥ 1, equation (65)
becomes

V̇c(x) ≤ x�(t)Ξx(t) + τ+r4 (ρ
∗)2 ||B�o Bo|| ||x(t)||2 + τ+r5 ||I�B�o BoI|| μ2(t) ||x(t)||2

+τ+r6 (θ
∗)2 ||x(t)||2 + 2ρ∗||PBo|| ||x(t)||2 + 2||PBoI|| |μ(t)| ||x(t)||2

6 + 2θ∗||P|| ||x(t)||2 + 2δ1 |μ(t)| ||x(t)||2 + 2δ2 μ2(t) ||x(t)||2
+2δ3 |μ(t)| θ̂(t) ||x(t)||2 + 2κ |μ(t)| θ̂(t) ||x(t)||2− 2κ θ∗ ||x(t)||2
+2κ θ∗ θ̂(t) ||x(t)||2− 2κ (θ∗)2 ||x(t)||2. (69)

It can be shown that V̇c(x) < 0 if the adaptive law parameters δ1, δ2, and δ3 are selected as
stated in Theorem 3, and κ is selected to satisfy the following two conditions: κ > 1

2 τ+r6 and
||P|| − κ + κθ̂(t) < 0. Hence, we need to select κ such that

κ > max
{

1
2

τ+r6 ,
||P||

1− θ̂(t)

}
. (70)

It is clear that when θ̂(t) > 1, we only need to ensure that κ > 1
2 τ+r6. Note that from

equation (63), θ̂(t) > 1 can be easily ensured by selecting θ̂(0) > 1 and κ > 1
2 τ+r6 to

guarantee that θ̂(t) in equation (63) is monotonically increasing. Hence, we guarantee that

V̇c(x) ≤ x�(t)Ξx(t), (71)

where Ξ < 0. Hence, V̇c(x) < 0 which guarantees asymptotic stabilization of the closed-loop
system.

3.4 Adaptive control when both θ∗ and ρ∗ are unknown
Here, we wish to stabilize the system (6) considering the control law (3) when both θ∗ and ρ∗
are unknown. Here, the following Lyapunov-Krasovskii functional is used

Vd(x) = Vc(x) + V11(x), (72)

where Vc(x) is defined in equations (59), and V11(x) is defined as

V11(x) = (1 + ρ∗) [ρ̃(t)]2 , (73)
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where its time derivative is
V̇11(x) = 2 (1 + ρ∗) ρ̃(t) ˙̃ρ(t). (74)

Since ρ̃(t) = ρ̂(t)− ρ∗, then ˙̃ρ(t) = ˙̂ρ(t). Hence, equation (74) becomes

V̇11(x) = 2 (1 + ρ∗) [ρ̂(t)− ρ∗] ˙̂ρ(t). (75)

The next Theorem provides the main results for this case.

Theorem 4: Consider system (6). If there exist matrices 0 < X = X� ∈ �n×n, Y ∈ �m×n,
Z ∈ �n×n, and scalars ε1 > 0, ε2 > 0, ε3 > 0, ε4 > ε, ε5 > ε and ε6 > ε (where ε is an arbitrary
small positive constant) such that the LMI (25) has a feasible solution, and K = YX−1, and μ(t) is
adapted subject to the adaptive laws

μ̇(t) = Proj
{

λ1 sgn (μ(t)) ||x(t)||2 + λ2 μ(t) ||x(t)||2

+λ3 sgn (μ(t)) θ̂(t) ||x(t)||2 + λ4 sgn (μ(t)) ρ̂(t) ||x(t)||2, μ(t)
}

, (76)

˙̂θ(t) = σ ||x(t)||2, (77)
˙̂ρ(t) = ς ||x(t)||2, (78)

where Proj{·} Krstic et al. (1995) is applied to ensure that |μ(t)| ≥ 1 as follows

μ(t) =

⎧⎨
⎩

μ(t) if |μ(t)| ≥ 1
1 if 0 ≤ μ(t) < 1
−1 if −1 < μ(t) < 0,

and the adaptive law parameters are selected such that λ1 < − [||PBoI||], λ2 <
− 1

2 τ+r5||I�B�o BoI||, λ3 < −σ, λ4 < −ς, σ > 1
2 τ+r6, ς > 1

2 τ+r4||B�o Bo||, θ̂(0) > 1 and
ρ̂(0) > 1, then the control law (3) will guarantee asymptotic stabilization of the closed-loop system.

Proof The time derivative of Vd(x) is

V̇d(x) = V̇c(x) + V̇11(x). (79)

Following the steps used in the proof of Theorem 3 and using equation (75), it can be shown
that

V̇d(x) ≤ x�(t)Ξx(t) + τ+r4x
�(t)ΔK�(t)B�o BoΔK(t)x(t)

+τ+r5z
�(t)I�B�o BoIz(t) + τ+r6E

�(x, t)E(x, t) + 2ρ∗||PBo|| ||x(t)||2
+2||PBoI|| |μ(t)| ||x(t)||2 + 2θ∗||P|| ||x(t)||2 + 2 μ(t) μ̇(t)

+2 (1 + θ∗)
[
θ̂(t)− θ∗

] ˙̂θ(t) + 2 (1 + ρ∗) [ρ̂(t)− ρ∗ ] ˙̂ρ(t), (80)

where Ξ is defined in equation (40). Using the linearization procedure and invoking the Schur
complement (as in the proof of Theorem 1), it can be shown that Ξ is guaranteed to be negative
definite whenever the LMI (25) has a feasible solution. Using the adaptive laws (76)- (78)
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in (80) and the fact that |μ(t)| ≥ 1, we get

V̇b(x) ≤ x�(t)Ξx(t) + τ+r4 (ρ
∗)2 ||B�o Bo || ||x(t)||2 + τ+r5 ||I�B�o BoI|| μ2(t) ||x(t)||2

+τ+r6 (θ
∗)2 ||x(t)||2 + 2ρ∗||PBo|| ||x(t)||2 + 2||PBoI|| |μ(t)| ||x(t)||2

+2θ∗||P|| ||x(t)||2 + 2λ1 |μ(t)| ||x(t)||2 + 2λ2 μ2(t) ||x(t)||2
+2λ3 |μ(t)| θ̂(t) ||x(t)||2 + 2λ4 |μ(t)| ρ̂(t) ||x(t)||2 + 2σ |μ(t)| θ̂(t) ||x(t)||2
−2σ θ∗ ||x(t)||2 + 2σ θ∗ θ̂(t) ||x(t)||2− 2σ (θ∗)2 ||x(t)||2 + 2ς |μ(t)| ρ̂(t) ||x(t)||2
−2ς ρ∗ ||x(t)||2 + 2ς ρ∗ ρ̂(t) ||x(t)||2− 2ς (ρ∗)2 ||x(t)||2. (81)

Arranging terms of equation (81), it can be shown that V̇d(x) < 0 if the adaptive law
parameters λ1, λ2, λ3, and λ4 are selected as stated in Theorem 4, and σ and ς are selected
to satisfy the following conditions: σ > 1

2 τ+r6, 2||P|| − σ + σθ̂(t) < 0, ς > 1
2 τ+r4||B�o Bo||,

and ||PBo|| − ς + ςρ̂(t) < 0. Hence, we need to select σ and ς such that

σ > max
{

1
2

τ+r6 ,
||P||

1− θ̂(t)

}
, (82)

ς > max
{

1
2

τ+r4||B�o Bo|| ,
||PBo||

1− ρ̂(t)

}
. (83)

It is clear that when θ̂(t) > 1 and ρ̂(t) > 1, we only need to ensure that σ > 1
2 τ+r6 and

ς > 1
2 τ+r4||B�o Bo||. Note that from equations (77)- (78), θ̂(t) > 1 and ρ̂(t) > 1 can be easily

ensured by selecting θ̂(0) > 1 and ρ̂(0) > 1 and σ and ς as stated in Theorem 4 to guarantee
that θ̂(t) and ρ̂(t) are monotonically increasing. Hence, we guarantee that

V̇d(x) ≤ x�(t) Ξ x(t), (84)

where Ξ < 0. Hence, V̇d(x) < 0 which guarantees asymptotic stabilization of the closed-loop
system.

Remarks:

1. The results obtained in all theorems stated above are sufficient stabilization results, that is
asymptotic stabilization results are guaranteed only if all of the conditions in the theorems
are satisfied.

2. The projection for μ may introduce chattering for μ and control input u Utkin (1992). The
chattering phenomenon can be undesirable for some applications since it involves high
control activity. It can, however, be reduced for easier implementation of the controller.
This can be achieved by smoothing out the control discontinuity using, for example, a low
pass filter. This, however, affects the robustness of the proposed controller.

4. Simulation example

Consider the second order system in the form of (1) such that

Ao =

[
2 1.1

2.2 −3.3

]
, Bo =

[
1

0.1

]
, Ad =

[ −0.5 0
0 −1.2

]
, (85)
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Fig. 1. Closed-loop response when both θ∗ and ρ∗ are known

and τ∗ = 0.1. Using the LMI control toolbox of MATLAB, when the following scalars are
selected as ε1 = ε2 = ε3 = ε4 = ε5 = ε6 = 1, the LMI (25) is solved to find the following
matrices:

X =

[
0.7214 0.1639
0.1639 0.2520

]
,Y =

[ −1.7681 −1.1899
]

. (86)

Using the fact that K = YX−1, K is found to be K =
[ −1.6173 −3.6695

]
. Here,

for simulation purposes, the nonlinear perturbation function is assumed to be E(x(t)) =[
1.2 |x1(t)| , 1.2 |x2(t)|

]�, where x(t) =
[

x1(t) , x2(t)
]�. Based on Assumption 2.1,

it can be shown that θ∗ = 1.2. Also, the uncertainty of the state feedback gain is assumed to
be ΔK(t) =

[
0.1sin(t) 0.1cos(t)

]
. Hence, based on Assumption 2.2, it can be shown that

ρ∗ = 0.1.

4.1 Simulation results when both θ∗ and ρ∗ are Known

For this case, the control law (3) is employed subject to the initial conditions x(0) = [−1 , 1]�
and μ(0) = 1.5. To satisfy the conditions of Theorem 1, the adaptive law parameters are
selected as α1 = −10 and α2 = −0.5. The closed-loop response of this case is shown in Fig. 1,
where the upper two plots show the response of the two states x1(t) and x2(t), and third and
fourth plots show the projected signal μ(t) and the control u(t).

4.2 Simulation results when θ∗ is known and ρ∗ is unknown

For this case, the control law (3) is employed subject to the initial conditions x(0) = [−1 , 1]�
and μ(0) = 1.5 and ρ̂(0) = 1.1. To satisfy the conditions of Theorem 2, the adaptive law
parameters are selected as β1 = −10, β2 = −0.5, β3 = −0.2, and γ = 0.1. For this case, the
closed-loop response is shown in Fig. 2, where the upper two plots show the response of the
two states x1(t) and x2(t), third plot shows the projected signal μ(t), the fourth plot shows
ρ̂(t) and the fifth plot shows the control u(t).
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Fig. 3. Closed-loop response when θ∗ is unknown and ρ∗ is known

4.3 Simulation results when θ∗ is unknown and ρ∗ is known

For this case, the control law (3) is employed subject to the initial conditions x(0) = [−1 , 1]�
and μ(0) = 1.1 and θ̂(0) = 1.1. To satisfy the conditions of Theorem 3, the adaptive law
parameters are selected as δ1 = −5, δ2 = −2, δ3 = −1.5 and κ = 1. For this case, the
closed-loop response is shown in Fig. 3, where the upper two plots show the response of the
two states x1(t) and x2(t), third plot shows the projected signal μ(t), the fourth plot shows
θ̂(t) and the fifth plot shows the control u(t).
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Fig. 4. Closed-loop response when both θ∗ and ρ∗ are unknown

4.4 Simulation results when both θ∗ and ρ∗ are unknown

For this case, the control law (3) is employed subject to the initial conditions x(0) = [−1 , 1]�
and μ(0) = 1.1, θ̂(0) = 1.1 and ρ̂(0) = 1.1. To satisfy the conditions of Theorem 4, the adaptive
law parameters are selected as λ1 = −5, λ2 = −1, λ3 = −1.5, λ4 = −1.5, σ = 1, and ς = 1.
For this case, the closed-loop response is shown in Fig. 4, where the upper two plots show
the response of the two states x1(t) and x2(t), third plot shows the projected signal μ(t), the
fourth plot shows θ̂(t), the fifth plot shows ρ̂(t), and the sixth plot shows the control u(t).

5. Conclusion

In this chapter, we investigated the problem of designing resilient delay-dependent adaptive
controllers for a class of uncertain time-delay systems with time-varying delays and a
nonlinear perturbation when perturbations also appear in the state feedback gain of the
controller. It is assumed that the nonlinear perturbation is bounded by a weighted norm
of the state vector such that the weight is a positive constant, and the norm of the uncertainty
of the state feedback gain is assumed to be bounded by a positive constant. Under these
assumptions, adaptive controllers have been developed for all combinations when the upper
bound of the nonlinear perturbation weight is known and unknown, and when the value of
the upper bound of the state feedback gain perturbation is known and unknown. For all these
cases, asymptotically stabilizing adaptive controllers have been derived. Also, a numerical
simulation example, that illustrates the design approaches, is presented.
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1. Introduction 
Time-delay frequently occurs in many practical systems, such as chemical processes, 
manufacturing systems, long transmission lines, telecommunication and economic systems, 
etc. Since time-delay is a main source of instability and poor performance, the control 
problem of time-delay systems has received considerable attentions in literature, such as [1]-
[9]. The design approaches adopt in these literatures can be divided into the delay-
dependent method [1]-[5] and the delay-independent method [6]-[9]. The delay-dependent 
method needs an exactly known delay, but the delay-independent method does not. In other 
words, the delay-independent method is more suitable for practical applications. 
Nevertheless, most literatures focus on linear time-delay systems due to the fact that the 
stability analysis developed in the two methods is usually based on linear matrix inequality 
techniques [10]. To deal with nonlinear time-delay systems, the Takagi-Sugeno (TS) fuzzy 
model-based approaches [11]-[12] extend the results of controlling linear time-delay systems 
to more general cases. In addition, some sliding-mode control (SMC) schemes have been 
applied to uncertain nonlinear time-delay systems in [13]-[15]. However, these SMC 
schemes still exist some limits as follows: i) specific form of the dynamical model and 
uncertainties [13]-[14]; ii) an exactly known delay time [15]; and iii) a complex gain design 
[13]-[15]. From the above, we are motivated to further improve SMC for nonlinear time-
delay systems in the presence of matched and unmatched uncertainties. 
The fuzzy control and the neural network control have attractive features to keep the 
systems insensitive to the uncertainties, such that these two methods are usually used as a 
tool in control engineering. In the fuzzy control, the TS fuzzy model [16]-[18] provides an 
efficient and effective way to represent uncertain nonlinear systems and renders to some 
straightforward research based on linear control theory [11]-[12], [16]. On the other hand, 
the neural network has good capabilities in function approximation which is an indirect 
compensation of uncertainties. Recently, many fuzzy neural network (FNN) articles are 
proposed by combining the fuzzy concept and the configuration of neural network, e.g., 
[19]-[23].  There, the fuzzy logic system is constructed from a collection of fuzzy If-Then 
rules while the training algorithm adjusts adaptable parameters. Nevertheless, few results 
using FNN are proposed for time-delay nonlinear systems due to a large computational 
load and a vast amount of feedback data, for example, see [22]-[23]. Moreover, the training 
algorithm is difficultly found for time-delay systems. 
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In this paper, an adaptive TS-FNN sliding mode control is proposed for a class of nonlinear 
time-delay systems with uncertainties. In the presence of mismatched uncertainties, we 
introduce a novel sliding surface design to keep the sliding motion insensitive to 
uncertainties and time-delay. Although the form of the sliding surface is as similar as 
conventional schemes [13]-[15], a delay-independent sufficient condition for the existence of 
the asymptotic sliding surface is obtained by appropriately using the Lyapunov-Krasoviskii 
stability method and LMI techniques. Furthermore, the gain condition is transformed in 
terms of a simple and legible LMI. Here less limitation on the uncertainty is required. When 
the asymptotic sliding surface is constructed, the ideal and TS-FNN-based reaching laws are 
derived. The TS-FNN combining TS fuzzy rules and neural network provides a near ideal 
reaching law. Meanwhile, the error between the ideal and TS-FNN reaching laws is 
compensated by adaptively gained switching control law. The advantages of the proposed 
TS-FNN are: i) allowing fewer fuzzy rules for complex systems (since the Then-part of fuzzy 
rules can be properly chosen); and ii) a small switching gain is used (since the uncertainty is 
indirectly cancelled by the TS-FNN). As a result, the adaptive TS-FNN sliding mode 
controller achieves asymptotic stabilization for a class of uncertain nonlinear time-delay 
systems. 
This paper is organized as follows. The problem formulation is given in Section 2. The 
sliding surface design and ideal sliding mode controller are given in Section 3. In Section 4, 
the adaptive TS-FNN control scheme is developed to solve the robust control problem of 
time-delay systems. Section 5 shows simulation results to verify the validity of the proposed 
method. Some concluding remarks are finally made in Section 6. 

2. Problem description 
Consider a class of nonlinear time-delay systems described by the following differential 
equation: 

1
1

( ) ( ) ( ) ( ) ( )

( )( ( ) ( ))

h
dk dk kkx t A A x t A A x t d

Bg x u t h x
=

−

= + Δ + + Δ −

+ +

∑  

 max( ) ( ), [  0]x t t t dψ= ∈ −  (1) 

where ( ) nx t R∈  and ( )u t R∈  are the state vector and control input, respectively; kd R∈  
( 1,  2,   ...,  k h= ) is an unknown constant delay time with upper bounded maxd ; A  and dkA  
are nominal system matrices with appropriate dimensions; AΔ  and dkAΔ  are time-varying 
uncertainties; ( )x t  is defined as 1( ) [ ( ) ( ) ( )]Thx t x t x t d x t d= − − ; ( )h ⋅  is an unknown 
nonlinear function containing uncertainties; B  is a known input matrix; ( )g ⋅  is an unknown 
function presenting the input uncertainties; and ( )tψ  is the initial of state. In the system (1), 
for simplicity, we assume the input matrix [0 0 1]TB = and partition the state vector 

( )x t  into 1 2[ ( ) ( )]Tx t x t  with 1
1( ) nx t R −∈  and 2( )x t R∈ . Accompanying the state partition, 

the system (1) can be decomposed into the following: 

 1 11 11 11 11 11

12 12 12 12 21

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

h
dk dk kk

h
dk dk kk

x t A A x t A A x t d

A A x t A A x t d
=

=

= + Δ + + Δ −

+ + Δ + + Δ −

∑
∑

 (2) 
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2 21 21 1 11 11 11

22 22 2 22 22 21
1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ( ) ( ( )))

h
dk dk kk

h
dk dk kk

x t A A x t A A x t d

A A x t A A x t d

g x u t h x t

=

=
−

= + Δ + + Δ −

+ + Δ + + Δ −

+ +

∑
∑  (3) 

where ijA , dkijA , ijAΔ , and dkijAΔ  (for ,  1,  2 i j = and  1,  ...,  )k h=  with appropriate 
dimension are decomposed components of A , dkA , AΔ , and dkAΔ , respectively. 
Throughout this study we need the following assumptions: 
Assumption 1: For controllability, ( ) 0g x >  for ( ) cx t U∈ , where cU ⊂Rⁿ. Moreover, 

( )g x L∞∈  if ( )x t L∞∈ . 
Assumption 2: The uncertainty ( )h x  is bounded for all ( )x t . 
Assumption 3: The uncertain matrices satisfy 

 [ ]11 12 1 1 11 12[ ]A A D C E EΔ Δ =  (4) 

 [ ]11 12 2 2 11 12[ ]dk dk dk dkA A D C E EΔ Δ =  (5) 

for some known matrices iD , iC , 1iE , and 1dk iE  (for 1,   2i = ) with proper dimensions and 
unknown matrices iC  satisfying 1iC ≤  (for 1,   2i = ). 
Note that most nonlinear systems satisfy the above assumptions, for example, chemical 
processes or stirred tank reactor systems, etc. If ( )g x  is negative, the matrix B  can be 
modified such that Assumption 1 is obtained. Assumption 3 often exists in robust control of 
uncertainties. Since uncertainties AΔ  and dAΔ  are presented, the dynamical model is closer 
to practical situations which are more complex than the cases considered in [13]-[15]. 
Indeed, the control objective is to determine a robust adaptive fuzzy controller such that the 
state ( )x t converges to zero. Since high uncertainty is considered here, we want to derive a 
sliding-mode control (SMC) based design for the control goal. Note that the system (1) is not 
the Isidori-Bynes canonical form [21], [24] such that a new design approaches of sliding 
surface and reaching control law is proposed in the following. 

3. Sliding surface design 

Due to the high uncertainty and nonlinearity in the system (1), an asymptotically stable 
sliding surface is difficultly obtained in current sliding mode control. This section presents 
an alternative approach to design an asymptotic stable sliding surface below. 
Without loss of generality, let the sliding surface denote 

 ( ) [ 1 ] ( ) ( ) 0S t x t x t= −Λ = Λ =  (6) 

where ( 1)nR −Λ∈ and [ ]1Λ = −Λ determined later. In the surface, we have 2 1( ) ( )x t x t= Λ . 
Thus, the result of sliding surface design is stated in the following theorem. 
Theorem 1: Consider the system (1) lie in the sliding surface (6). The sliding motion is 
asymptotically stable independent of delay, i.e., 1 2lim ( ),  ( ) 0

t
x t x t

→∞
= , if there exist positive 

symmetric matrices X , kQ and a parameter Λ  satisfying the following LMI: 



 Time-Delay Systems 

 

164 

Given 0ε > , 
Subject to 0X > , 0kQ >  

 11

21

(*)
0

N
N Iε
⎡ ⎤

<⎢ ⎥−⎣ ⎦
  (8) 
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11 12
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0 11 11 12 12 1
hT T T

kkN A X XA A K K A Q
=

= + + + +∑ ; 

 

K X= Λ ; 1 1{ , , , }a a b bI diag I I I Iε ε ε ε ε− −=  in which ,  a bI I  are identity matrices with proper 
dimensions; and (*) denotes the transposed elements in the symmetric positions.                 ■ 
Proof: When the system (1) lie in the sliding surface (6), the sliding motion is described by 
the dynamics (7). To analysis the stability of the sliding motion, let us define the following 
Lyapunov-Krasoviskii function 

1 1 1 11( ) ( ) ( ) ( ) ( )
k

thT T
kk t d

V t x t Px t x v Q x v dv
= −

= +∑ ∫  

where 0P >  and 0kQ >  are symmetric matrices. The time derivative of ( )V t  along the 
dynamics (7) is 

1 2( ) ( )( ) ( )TV t x t x t= Ω +Ω  

where  
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Note that the second term 2Ω  can be further rewritten in the form: 

2
T T TDCE E C DΩ = +  

where  

1 2
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with C  satisfies T
dC C I≤  for identity matrix dI  from Assumption 3. According to the 

matrix inequality lemma [25] (see Appendix I) and the decomposition (9), the stability 
condition 0Ω <  is equivalent to 

1
1 0T

T

E
E D I

Dε
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After applying the Schur complement to the above inequality, we further have 
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M Iε

Ω⎡ ⎤
<⎢ ⎥−⎣ ⎦

 

where 

11 12

121 122 21 22
21

1

2

0 0 0
0

0 0

0 0

h h
T

T
h

E E
E E E E

M
D P

D P

+ Λ⎡ ⎤
⎢ ⎥+ Λ + Λ⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

By premultiplying and postmultiplying above inequality by a symmetric positive-definite 
matrix {  , }a bdiag XI I  with ,  a bI I  are identity matrices with proper dimensions, the LMI 

addressed in (8) is obtained with 1X P−=  and k kQ XQ X= . Therefore, if the LMI problem 
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has a feasible solution, then the sliding dynamical system (7) is asymptotically stable, i.e., 
1lim ( ) 0

t
x t

→∞
= . In turn, from the fact 2 1( ) ( )x t x t= Λ  in the sliding surface, the state 2( )x t  will 

asymptotically converge to zero as t →∞ . Moreover, since the gain condition (8) does not 
contain the information of the delay time, the stability is independent of the delay. 
After solving the LMI problem (8), the sliding surface is constructed by KPΛ = . Therefore, 
the LMI-based sliding surface design is completed for uncertain time-delay systems. 
Note that the main contribution of Theorem 1 is solving the following problems: i) the 
sliding surface gain Λ  appears in the delayed term 1( )kx t d−  such that the gain design is 
highly coupled; and ii) the mismatched uncertainties (e.g., 11AΔ , 11dkAΔ , 12AΔ , 12dkAΔ ) is 
considered in the design. Compared to current literature, this study proposes a valid and 
straightforward LMI-based sliding mode control for highly uncertain time-delay systems.  
The design of exponentially stable sliding surface, a coordinate transformation is used 

1( ) ( )tt e x tγσ =  with an attenuation rate 0γ > . When ( )tσ is asymptotically stable, the state 

1( )x t  exponentially stable is guaranteed (see Appendix II or [26],[28] in detail).  
Based on Theorem 1, the control goal becomes to drive the system (1) to the sliding surface 
defined in (6). To this end, let us choose a Lyapunov function candidate 2( ) / 2sV g x S= .  
Taking the derivative the Lyapunov sV  along with (1), it renders to 

{ }
2

1

2

( ) ( ) ( ) ( ) ( ) ( ) / 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) / 2 ( ) ( )

s
h

dk dk kk

V t g x S t S t g x S t

S t g x A A x t A A x t d

g x S t u t h x

=

= +

⎡ ⎤= Λ + Δ + + Δ −⎢ ⎥⎣ ⎦
+ + +

∑  

If the plant dynamics and delay-time are exactly known, then the control problem can be 
solved by the so-called feedback linearization method [24]. In this case, the ideal control law 

*u  is set to 

 
]

*
1

2

( ) { ( ) ( ) ( )

( ) ( ) ( ) ( ) / 2 ( ) ( )}

h
dk dk kk

f

u t g x A A x t d

A A x t g x S t k S t h x

=
⎡= − Λ + Δ −⎢⎣

+ + Δ + + +

∑
  (10) 

where fk  is a positive control gain. Then the ideal control law (10) yields ( )sV t  satisfying 
( ) 0sV t < . 

Since ( ) 0sV t >  and ( ) 0sV t < , the error signal ( )S t  converges to zero in an asymptotic 
manner, i.e., lim ( ) 0

t
S t

→∞
= . This implies that the system (1) reaches the sliding surface ( ) 0S t =  

for any start initial conditions. Therefore, the ideal control law provides the following result. 
Unfortunately, the ideal control law (10) is unrealizable in practice applications due to the 
poor modeled dynamics. To overcome this difficulty, we will present a robust reaching 
control law by using an adaptive TS-FNN control in next section. 

4. TS-FNN-based sliding mode control 

In control engineering, neural network is usually used as a tool for modeling nonlinear 
system functions because of their good capabilities in function approximation. In this 
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section, the TS-FNN [26] is proposed to approximate the ideal sliding mode control law 
*( )u t . Indeed, the FNN is composed of a collection of T-S fuzzy IF-THEN rules as follows: 

 :Rule i  

1 1 i is  and   is  THENi ni niIF z G and z G  

T
0 0 1 1( )  zn i i nv inv iu t z v z v z v v= + + + =  

for 1,2, , Ri n= , where Rn  is the number of fuzzy rules; 1z ~ niz  are the premise variables 
composed of available signals; nu  is the fuzzy output with tunable [ ]0 1

T
i i i invv v v v=  

and properly chosen signal [ ]0 1
T

nvz z z z= ; ( )ij jG z ( 1,2, , ij n= ) are the fuzzy sets 
with Gaussian membership functions which have the form 2 2( ) exp( ( ) /( ))ij j j ij ijG z z m σ= − −   
where ijm  is the center of the Gaussian function; and ijσ  is the variance of the Gaussian 
function. 
Using the singleton fuzzifier, product fuzzy inference and weighted average defuzzifier, the 

inferred output of the fuzzy neural network is 1 ( )nr T
n i iiu z z vμ

=
=∑ where 

1( ) ( ) / ( )nr
i i iz z zμ ω

=
= ∑ , [ ]1 2

T
niz z z z=  and 1( ) ( )ni

i ij jjz G zω
=

=∏ . For simplification, 

define two auxiliary signals  

    1 2
TT T T

nRz z zξ μ μ μ⎡ ⎤= ⎣ ⎦
  

1 2
TT T T

nRv v vθ ⎡ ⎤= ⎣ ⎦
. 

In turn, the output of the TS-FNN is rewritten in the form: 

 ( ) T
nu t ξ θ=   (13) 

Thus, the above TS-FNN has a simple structure, which is easily implemented in comparison 
of traditional FNN. Moreover, the signal z  can be appropriately selected for more complex 
function approximation. In other words, we can use less fuzzy rules to achieve a better 
approximation. 
According to the uniform approximation theorem [19], there exists an optimal parametric 
vector *θ  of the TS-FNN which arbitrarily accurately approximates the ideal control law 

*( )u t . This implies that the ideal control law can be expressed in terms of an optimal TS-
FNN as *( ) ( )Tu t xξ θ ε= +  where ( )xε  is a minimum approximation error which is assumed 
to be upper bounded in a compact discussion region. Meanwhile, the output of the TS-FNN 
is further rewritten in the following form: 

 * ( )T
nu u xξ θ ε= −  (14) 

where *θ θ θ= −  is the estimation error of the optimal parameter. Then, the tuning law of 
the FNN is derived below. 
Based on the proposed TS-FNN, the overall control law is set to 

 ( ) ( ) ( )n cu t u t u t= +  (15) 
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where ( )nu t  is the TS-FNN controller part defined in (13); and ( )cu t  is an auxiliary 
compensation controller part determined later. The TS-FNN control ( )nu t  is the main tracking 
controller part that is used to imitate the idea control law *( )u t  due to high uncertainties, 
while the auxiliary controller part ( )cu t  is designed to cope with the difference between the 
idea control law and the TS-FNN control. Then, applying the control law (15) and the 
expression form of ( )nu t  in (10), the error dynamics of S  is obtained as follows: 

11

*

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1( ) ( ) ( ) ( ) ( )
2

h
dk dk kk

T
c

T
f c

g x S t

g x A A x t A A x t d

h x u t x u t

k S t g x S t x u t

ξ θ ε

ξ θ ε

=
⎡ ⎤= Λ + Δ + + Δ −⎢ ⎥⎣ ⎦

+ + + − +

= − − + − +

∑
 

where the definition of *( )u t  in (10) has been used. Now, the auxiliary controller part and 
tuning law of FNN are stated in the following. 
Theorem 2: Consider the uncertain time-delay system (1) using the sliding surface designed 
by Theorem 1 and the control law (15) with the TS-FNN controller part (14) and the 
auxiliary controller part 

ˆ( ) sgn( ( ))nu t S tδ= −  

The controller is adaptively tuned by 

 ( ) ( )t S tθθ η ξ= −  (17) 

 ˆ( ) ( )t S tδδ η= −  (18) 

where θη  and δη  are positive constants. The closed-loop error system is guaranteed with 
asymptotic convergence of ( )S t , 1( )x t , and 2( )x t , while all adaptation parameters are 
bounded.                                                                                                                                              ■ 
Proof: Consider a Lyapunov function candidate as 

2 21 1 1( ) ( ( ) ( ) ( ) ( ) ( ))
2

T
nV t g x S t t t t

θ δ
θ θ δ

η η
= + +  

where ˆ( ) ( )  t tδ δ δ= − is the estimation error of the bound of ( )xε  (i.e., sup ( )t xε δ≤ ). By 
taking the derivative the Lyapunov ( )nV t  along with (16), we have 

2

2

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1ˆ( ( ) ) ( ) ( ) ( )

T
n

T T
f

V t g x S t S t g x S t t t t t

k S t S t x S t S t t t t

t S t t t

θ δ

θ

δ

θ θ δ δ
η η

ε δ ξ θ θ θ
η

δ δ δ δ
η

= + + +

= − − − + +

− − +
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When substituting the update laws (17), (18) into the above, ( )nV t  further satisfies 

2

2

( ) ( ) ( ) ( ) ( )

( ) ( ( ) ) ( )
( )

n f

f

f

V t k S t S t x S t

k S t x S t
k S t

ε δ

δ ε

= − − −

≤ − − −

≤ −

 

Since ( ) 0nV t >  and ( ) 0nV t < , we obtain the fact that ( ) (0)n nV t V≤ , which implies all ( )S t , 
( )tθ  and ( )tδ  are bounded. In turn, ( )S t L∞∈  due to all bounded terms in the right-hand 

side of (16). Moreover, integrating both sides of the above inequality, the error signal ( )S t  is 
2L -gain stable as 

2
0

( ) (0) ( ) (0)
t

f n n nk S d V V t Vτ τ ≤ − ≤∫  

where (0)nV  is bounded and ( )nV t  is non-increasing and bounded. As a result, combining 
the facts that ( )S t , ( )S t L∞∈  and, 2( )S t L∈  the error signal ( )S t  asymptotically converges to 
zero as t →∞  by Barbalat's lemma. Therefore, according to Theorem 1, the state ( )x t will is 
asymptotically sliding to the origin. The results will be similar when we replace another 
FNN[26] or NN[27] with the TS-FNN, but the slight different to transient.  

5. Simulation results 
In this section, the proposed TS-FNN sliding mode controller is applied to two uncertain 
time-delay system. 
Example 1: Consider an uncertain time-delay system described by the dynamical equation 
(1) with [ ]1 2 3( ) ( ) ( ) ( )x t x t x t x t= , 

10 sin( ) 1 1 sin( )
( ) 1 8 cos( ) 1 cos( )

5 cos( ) 4 sin( ) 2 cos( )

t t
A A t t t

t t t

− + +⎡ ⎤
⎢ ⎥+ Δ = − − −⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

1 sin( ) 0 1 sin( )
( ) 0 1 cos( ) 1 cos( )

3 sin( ) 4 cos( ) 2 sin( )
d d

t t
A A t t t

t t t

+ +⎡ ⎤
⎢ ⎥+ Δ = + +⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

 

[ ]0 0 1 ,  ( ) 1TB g x= = and ( ) 0.5 ( ) sin( )h x x x t d t= + − + . 

It is easily checked that Assumptions 1~3 are satisfied for the above system. Moreover, for 
Assumption 3, the uncertain matrices 11( )A tΔ , 12( )A tΔ , 11( )dA tΔ , and 12( )dA tΔ  are 
decomposed with 

1 2 11 21
1 0
0 1

D D E E
⎡ ⎤

= = = = ⎢ ⎥
⎣ ⎦

, [ ]12 22 1 1 TE E= = , 

1
sin( ) 0

( )
0 cos( )

t
C t

t
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

sin( ) 0
( )

0 cos( )
t

C t
t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
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First, let us design the asymptotic sliding surface according to Theorem 1. By choosing 
0.2ε =  and solving the LMI problem (8), we obtain a feasible solution as follows: 

 [ ]0.4059 0.4270Λ =  

9.8315 0.2684
   

0.2684 6.1525
P

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 

85.2449 2.9772
   

2.9772 51.2442
Q

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

The error signal S  is thus created from (6). 
Next, the TS-FNN (11) is constructed with 1in = , 8Rn = , and 4vn = . Since the T-S fuzzy 
rules are used in the FNN, the number of the input of the TS-FNN can be reduced by an 
appropriate choice of THEN part of the fuzzy rules. Here the error signal S  is taken as the 
input of the TS-FNN, while the discussion region is characterized by 8 fuzzy sets with 
Gaussian membership functions as (12). Each membership function is set to the center 

2 4( 1) /( 1)ij Rm i n= − + − −  and variance 10ijσ =  for 1i , ,= … Rn  and 1j = . On the other 
hand, the basis vector of THEN part of fuzzy rules is chosen as [ ]1 2 31 ( ) ( ) ( ) Tz x t x t x t= . 
Then, the fuzzy parameters jv  are tuned by the update law (17) with all zero initial 
condition (i.e., (0) 0jv =  for all j ). 
In this simulation, the update gains are chosen as 0.01θη =  and 0.01δη = . When assuming 
the initial state [ ](0) 2 1 1 Tx =  and delay time ( ) 0 2 0 15cos(0 9 )d t . . . t= + , the TS-FNN 
sliding controller (17) designed from Theorem 3 leads to the control results shown in Figs. 1 
and 2. The trajectory of the system states and error signal ( )S t  asymptotically converge to 
zero. Figure 3 shows the corresponding control effort. 
 

 
Fig. 1. Trajectory of states 1( )x t (solid); 2( )x t  (dashed); 3( )x t (dotted). 
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Fig. 2. Dynamic sliding surface ( )S t . 

 
 

 
 

Fig. 3. Control effort ( )u t . 
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Example 2: Consider a chaotic system with multiple time-dely system. The nonlinear system 
is described by the dynamical equation (1) with [ ]1 2( ) ( ) ( )x t x t x t= , 

1

1 1

2 2

( ) ( ) ( ) ( )( ( ) ( ))
( ) ( 0.02)
( ) ( 0.015)

d d

d d

x t A A x t Bg x u t h x
A A x t
A A x t

−= + Δ + +
+ + Δ −
+ + Δ −

 

where 1( ) 4.5g x− = , 
0 2.5
1 0.1

2.5
A

⎡ ⎤
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥⎣ ⎦

, 
sin( ) sin( )

0 0
t t

A
⎡ ⎤

Δ = ⎢ ⎥
⎣ ⎦

 

1
0 0

0.01 0.01dA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1
cos( ) cos( )
cos( ) sin( )d

t t
A

t t
⎡ ⎤

Δ = ⎢ ⎥
⎣ ⎦

 

2
0 0

0.01 0.01dA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2
cos( ) cos( )
sin( ) cos( )d

t t
A

t t
⎡ ⎤

Δ = ⎢ ⎥
⎣ ⎦

, 

 
3 2

1 2

2
2

1 1( ) [ ( ( )) 0.01 ( 0.02)
4.5 2.5
0.01 ( 0.015) 25cos( )]

h x x t x t

x t t

= − + −

+ − +
 

If both the uncertainties and control force are zero the nonlinear system is chaotic system 
(c.f. [23]). It is easily checked that Assumptions 1~3 are satisfied for the above system. 
Moreover, for Assumption 3, the uncertain matrices 11AΔ , 12AΔ , 111dAΔ , 112dAΔ  211dAΔ , 
and 212dAΔ  are decomposed with 

1 2 11 21 111 112 211 212 1D D E E E E E E= = = = = = = =  

 1 sin( )C t= , 2 cos( )C t=   

First, let us design the asymptotic sliding surface according to Theorem 1. By choosing 
0.2ε =  and solving the LMI problem (8), we obtain a feasible solution as follows: 
1.0014Λ = , 0 4860P .= , and 1 2 0.8129Q Q= = . The error signal ( )S t  is thus created. 

Next, the TS-FNN (11) is constructed with 1in = , 8Rn = , and. Since the T-S fuzzy rules are 
used in the FNN, the number of the input of the TS-FNN can be reduced by an appropriate 
choice of THEN part of the fuzzy rules. Here the error signal S  is taken as the input of the 
TS-FNN, while the discussion region is characterized by 8 fuzzy sets with Gaussian 
membership functions as (12). Each membership function is set to the center 

2 4( 1) /( 1)ij Rm i n= − + − −  and variance 5ijσ =  for 1i , ,= … Rn  and 1j = . On the other 
hand, the basis vector of THEN part of fuzzy rules is chosen as [ ]1 275 ( ) ( ) Tz x t x t= . Then, 
the fuzzy parameters jv  are tuned by the update law (17) with all zero initial condition (i.e., 

(0) 0jv =  for all j ). 
In this simulation, the update gains are chosen as 0.01θη =  and 0.01δη = . When assuming 
the initial state [ ](0) 2 2x = − , the TS-FNN sliding controller (15) designed from Theorem 3 
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leads to the control results shown in Figs. 4 and 5. The trajectory of the system states and 
error signal S  asymptotically converge to zero. Figure 6 shows the corresponding control 
effort. In addition, to show the robustness to time-varying delay, the proposed controller set 
above is also applied to the uncertain system with delay time 2( ) 0 02 0 015cos(0 9 )d t . . . t= + . 
The trajectory of the states and error signal S  are shown in Figs. 7 and 8, respectively. The 
control input is shown in Fig. 9 
 

 
Fig. 4. Trajectory of states 1( )x t (solid); 2( )x t  (dashed). 

 
Fig. 5. Dynamic sliding surface ( )S t . 
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Fig. 6. Control effort ( )u t . 

 
 

 
 

Fig. 7. Trajectory of states 1( )x t (solid); 2( )x t  (dashed). 
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Fig. 8. Dynamic sliding surface ( )S t . 

 

 
 

Fig. 9. Control effort ( )u t . 
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5. Conclusion 
In this paper, the robust control problem of a class of uncertain nonlinear time-delay 
systems has been solved by the proposed TS-FNN sliding mode control scheme. Although 
the system dynamics with mismatched uncertainties is not an Isidori-Bynes canonical form, 
the sliding surface design using LMI techniques achieves an asymptotic sliding motion. 
Moreover, the stability condition of the sliding motion is derived to be independent on the 
delay time. Based on the sliding surface design, and TS-FNN-based sliding mode control 
laws assure the robust control goal. Although the system has high uncertainties (here both 
state and input uncertainties are considered), the adaptive TS-FNN realizes the ideal 
reaching law and guarantees the asymptotic convergence of the states. Simulation results 
have demonstrated some favorable control performance by using the proposed controller 
for a three-dimensional uncertain time-delay system. 
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Appendix I 
Refer to the matrix inequality lemma in the literature [25]. Consider constant matrices D , E  
and a symmetric constant matrix G  with appropriate dimension. The following matrix 
inequality 

( ) ( ) 0T T TG DC t E E C t D+ + <  
 

for ( )C t  satisfying ( ) ( )TC t C t R≤ , if and only if, is equivalent to 
 

1 0 0
0

T
T

ERG E D
I D

ε
ε

−⎡ ⎤ ⎡ ⎤
⎡ ⎤+ <⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

for some ε>0.                                                                                                                                     ■ 

Appendix II 
An exponential convergence is more desirable for practice. To design an exponential sliding 
mode, the following coordinate transformation is used 
 

1( ) ( )tt e x tγσ =  

with an attenuation rate 0γ > . The equivalent dynamics to (2): 
 

1 1( ) ( ) ( )t tt e x t e x tγ γσ γ= +  
 

 1( ) ( )kh d
kkA t e t dγ

σσ σ
=

= + −∑   (A.1) 
 

where 
 

1 11 12 11 12nA I A A A Aσ γ −= + − Λ − Δ − Δ Λ , 
 

11 12 11 12k k k k kd d d d dA A A A Aσ = − Λ − Δ − Δ Λ  

 

; the equation (A.1) and the fact 1( ) ( )kd t
k ke t d e x t dγ γσ − = −  have been applied. If the system 

(A.1) is asymptotically stable, the original system (1) is exponentially stable with the decay 
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taking form of 1( ) ( )tx t e tγ σ−=  and an attenuation rate γ . Therefore, the sliding surface 
design problem is transformed into finding an appropriate gain Λ such that the subsystem 
(A.1) is asymptotically stable. 
Consider the following Lyapunov-Krasoviskii function 
 

2
1( ) ( ) ( ) ( ) ( )k

k

th dT T
kk t d

V t t P t e v xQ v dvγσ σ σ σ
= −

= +∑ ∫  

 

where 0P >  and 0kQ >  are symmetric matrices.  
Let the sliding surface ( ) 0S t =  with the definition (6). The sliding motion of the system (1) is 
delay-independent exponentially stable, if there exist positive symmetric matrices X , kQ  
and a parameter Λ  satisfying the following LMI: 
 

Given 0ε >  
 

Subject to 0X > , 0kQ >  

 11

21

(*)
0

N
N Iε
⎡ ⎤

<⎢ ⎥−⎣ ⎦
 (A.2) 
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max2
0 11 11 12 12 1

h dT T T
kkN A X XA A K K A e Qγ

=
= + + + +∑ ; 

 

K X= Λ ; 1 1{ , , , }a a b bI diag I I I Iε ε ε ε ε− −=  in which ,  a bI I  are identity matrices with proper 
dimensions; and (*) denotes the transposed elements in the symmetric positions. 
If the LMI problem has a feasible solution, then we obtain ( ) 0V t >  and ( ) 0V t < . This 
implies that the equivalent subsystem (A.1) is asymptotically stable, i.e., lim ( ) 0

t
tσ

→∞
= . In 

turn, the states 1( )x t  and 2( )x t  (here 2 1( ) ( )x t x t= Λ ) will exponentially converge to zero as 
t →∞ . As a result, the sliding motion on the manifold ( ) 0S t =  is exponentially stable. 
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Moreover, since the gain condition (A.2) does not contain the delay time kd , the sliding 
surface is delay-independent exponentially stable.                                                                       ■ 
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1. Introduction

The phenomenon of synchronization of dynamical systems was reported by the famous
Dutch scientist Christiaan Huygens in 1665 on his observation of synchronization of two
pendulum clocks. And, chaos theory has been aroused and developed very early (since
1960s) with efforts in many different research fields, such as mathematics (Li & Yorke, 1975;
Ruelle, 1980; Sharkovskii, 1964; 1995), physics (Feigenbaum, 1978; Hénon, 1976; Rossler,
1976), chemistry (Zaikin & Zhabotinsky, 1970; Zhabotinsky, 1964), biology (May, 1976) and
engineering (Lorenz, 1963a;b; Nakagawa, 1999), etc (Gleick, 1987; Stewart, 1990). However,
until 1983, the idea of synchronization of chaotic systems was raised by Fujisaka and
Yamada (Fujisaka & Yamada, 1983). There, the general stability theory of the synchronized
motions of the coupled-oscillator systems with the use of the extended Lyapunov matrix
approach, and the coupled Lorenz model was investigated as an typical example. A typical
synchronous system can be seen in Fig.1. In 1990, Pecora and Carroll (Pecora & Carroll, 1990)
realized chaos synchronization in the form of drive-response under the identical synchronous
scheme. Since then, chaos synchronization has been aroused and it has become the subject
of active research, mainly due to its potential applications in several engineering fields such
as communications (Kocarev et al., 1992; Parlitz et al., 1992; Parlitz, Kocarev, Stojanovski &
Preckel, 1996), lasers (Fabiny et al., 1993; Roy & Thornburg, 1994), ecology (Blasius et al., 1999),
biological systems (Han et al., 1995), system identification (Parlitz, Junge & Kocarev, 1996),
etc. The research evolution on chaos synchronization has led to several schemes of chaos
synchronization proposed successively and pursued, i.e., generalized (Rulkov et al., 1995),
phase (Rosenblum et al., 1996), lag (Rosenblum et al., 1997), projective (Mainieri & Rehacek,
1999), and anticipating (Voss, 2000) synchronizations. Roughly speaking, synchronization
of coupled dynamical systems can be interpreted to mean that the master sends the driving
signal to drive the slave, and there exists some functional relations in their trajectories during
interaction. In fact, the difference between synchronous schemes is lied in the difference of
functional relations in trajectories. In other words, a certain functional relation expresses the
particular characteristic of corresponding synchronous scheme. When a synchronous regime
is established, the expected functional relation is achieved and synchronization manifold is
usually used to refer to such specific relation in a certain coupled systems.
Time delay systems have been studied in both theory (Krasovskii, 1963) and
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application (Loiseau et al., 2009). The prominent feature of chaotic time-delay systems
is that they have very complicated dynamics (Farmer, 1982). Analytical investigation on
time-delay systems by Farmer has showed that it is very easy to generate chaotic behavior
even in systems with a single equation with a single delay such as Mackey-Glass’s, Ikeda’s.
Recently, researchers have been attracted by synchronization issues in coupled time-delay
systems. Accordingly, several synchronous schemes have been proposed and pursued.
However, up-to-date research works have been restricted to the synchronization models of
single-delay (Pyragas, 1998a; Senthilkumar & Lakshmanan, 2005) and multiple time delay
systems (MTDSs) (Shahverdiev, 2004; Shahverdiev et al., 2005; Shahverdiev & Shore, 2005).
There, coupling (or driving) signals are in the form of either linear or single nonlinear
transform of state variable. Those models of synchronization in coupled time-delay systems
can be used in secure communications (Pyragas, 1998b), however, the security is not
assured (Ponomarenko & Prokhorov, 2002; Zhou & Lai, 1999) due that there are several
advanced reconstruction techniques which can infer the system’s dynamics. From such the
fact, synchronization of MTDSs has been intensively investigated (Hoang et al., 2005). In
this chapter, recent development for synchronization in coupled MTDSs has been reported.
The examples will illustrate the existence and transition in various synchronous schemes in
coupled MTDSs.
The remainder of the chapter is organized as follows. Section 2 introduces the MTDSs
and its complexity. The proposed synchronization models of coupled MTDSs with various
synchronous schemes are described in Section 3. Numerical simulation for proposed
synchronization models is illustrated in Section 4. The discussions and conclusions for the
proposed models are given in the last two sections.

Fig. 1. A typical synchronous system.

2. Multiple time-delay systems

2.1 Overview of time-delay feedback systems
Let us consider the equation representing for a single time-delay system (STDS) as below

dx
dt

= −αx+ f (x(t− τ)) (1)

where α and τ are positive real numbers, τ is a time length of delay applied to the
state variable. f (x) = x

1+x10 and f (x) = sin(x) are well-known time-delay feedback
systems; Mackey-Glass (Mackey & Glass, 1977) and Ikeda (Ikeda & Matsumoto, 1987)
systems, respectively. α and/or τ can be used for controlling the complexity of chaotic
dynamics (Farmer, 1982). An analog circuit model (Namajūnas et al., 1995) of STDSs is
depicted in Fig. 2. The dynamical model of the circuit can be written as

dU
dt

=
UND(t)−U(t)

C0R0
(2)

where UND(t) = f (U(t− τ)). Apparently, the equations given in Eqs. (1) and (2) has the same
form.
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Chaos synchronization of coupled STDSs has been studied and experimented in several

Fig. 2. Circuit model of single delay feedback systems

fields such as circuits (Kim et al., 2006; Kittel et al., 1998; Namajūnas et al., 1995; Sano
et al., 2007; Voss, 2002), lasers (Celka, 1995; Goedgebuer et al., 1998; Lee et al., 2006;
Masoller, 2001; S. Sivaprakasam et al., 2002; Zhu & WU, 2004), etc. So far, most of research
works in this context have focused on synchronization models of STDSs (Pyragas, 1998a;
Senthilkumar & Lakshmanan, 2005), in which Mackey-Glass (Mackey & Glass, 1977) and
Ikeda (Ikeda & Matsumoto, 1987) systems have been employed as dynamical equations for
specific examples. Up to date, there have been several coupling methods for synchronization
models of STDSs, i.e., linear (Mensour & Longtin, 1998; Pyragas, 1998a) and single nonlinear
coupling (Shahverdiev & Shore, 2005). In other words, the form of driving signals is either
x(t) or f (x(t− τ)).
Recently, MTDSs have been interested and aroused (Shahverdiev, 2004). That is because of
their potential applications in various fields. A general equation representing for MTDSs is as

dx
dt

= −αx+
P

∑
i=1

mi f (x(t− τi)) (3)

where mi, τi ∈ (τi ≥ 0)�. It is clear that MTDSs can been seen as an extension of STDSs.
STDSs, MTDSs exhibit chaos.
Chaos synchronization models of MTDSs has been aroused by Shahverdiev et
al. (Shahverdiev, 2004; Shahverdiev et al., 2005). So far, the studies are constrained to
the cases that the coupling (or driving) signal is in the form of linear (x(t)) or single nonlinear
transform of delayed state variable ( f (x(t− τ))). A synchronization model using STDSs with
linear form of driving signal can be expressed by
Master:

dx
dt

= −αx+ f (x(t− τ)) (4)

Driving signal:
DS(t) = kx (5)

Slave:
dy
dt

= −αy+ f (y(t− τ)) + DS(t) (6)

where k is coupling strength. A synchronization model using MTDSs with linear form of
driving signal can be expressed by
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Master:
dx
dt

= −αx+
P

∑
i=1

mi f (x(t− τi)) (7)

Driving signal:
DS(t) = kx (8)

Slave:
dy
dt

= −αy+
P

∑
i=1

ni f (y(t− τi)) + DS(t) (9)

In the synchronous system given in Eqs. (7)-(9), if the driving signal is in the form of
DS(t) = k f (x(t − τ)), the synchronous system becomes synchronization of MTDSs with
single nonlinear driving signal.
In theoretical, such above synchronization models do not offer advantages for the secure
communication application due to the fact that their dynamics can be inferred easily by
using conventional reconstruction methods (Prokhorov et al., 2005; Voss & Kurths, 1997).
By such the reason, seeking for a non-reconstructed time-delay system is important for
the chaotic secure communication application. One of the disadvantages of state-of-the-art
reconstruction methods is that MTDSs can not be reconstructed if the measured time series
is sum of multiple nonlinear transforms of delayed state variable, i.e. ∑

j
f (x(t − τj)). This

is the key hint for proposing a new synchronization model of MTDSs. In the next section,
the synchronization models of coupled MTDSs are investigated, in which the driving signal
is sum of nonlinearly transformed components of delayed state variable, ∑

j
f (x(t− τj)). The

conditions for synchronization in particular synchronous schemes are considered and proved
under the Krasovskii-Lyapunov theory. The numerical simulation will demonstrate and verify
the prediction in these contexts.

2.2 The complexity analysis for MTDSs
The complexity degree of MTDSs is confirmed that MTDSs not only exhibit hyperchaos, but
also bring much more complicated dynamics in comparison with that in single delay systems.
This will emphasis significances of MTDSs to the secure communication application. In order
to illustrate the complicated dynamics of MTDSs, the Lyapunov spectrum and metric entropy
are calculated. Lyapunov spectrum shows the complexity measure while metric entropy
presents the predictability to chaotic systems. Here, Kolmogorov-Sinai entropy (Cornfeld
et al., 1982) is estimated with

KS = ∑
i

λi f or λi > 0 (10)

The two-delays Mackey-Glass system given in Eq. (11) is studied for this purpose. The
complexity degree with respect to values of parameters and of delays is shown by varying
α, mi and τi. There are several algorithms to calculate the Lyapunov exponents of dynamical
systems as presented in (Christiansen & Rugh, 1997; Grassberger & Procaccia, 1983; Sano &
Sawada, 1985; Zeng et al., 1991) and others. However, so far , all of the existing algorithms
are inappropriate to deal with the case of MTDSs. Here, estimation of Lyapunov spectrum is
based on the algorithm proposed by Masahiro Nakagawa (Nakagawa, 2007)

dx
dt

= −αx+m1
xτ1

1 + x10
τ1

+m2
xτ2

1 + x10
τ2

(11)
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Shown in Fig. 3(a) is largest Lyapunov exponents (LLE) and Kolmogorov-Sinai entropy with
some couples of value of m1 and m2. In this case, the value of τ1 and τ2 is set at 2.5 and 5.0,
respectively. The chaotic behavior exhibits in the specific value range of α. Moreover, the
range seems to be wider with the increase in the value of |m1| + |m2|. It is clear to be seen
from Fig.3 that the possible largest LEs and metric entropy in this system (approximately 0.3
for largest LEs and 1.4 for metric entropy) are larger in comparison with those of the single
delay Mackey-Glass system studied by J.D. Farmer (Farmer, 1982) (approximately 0.07 for
largest LEs and 0.1 for metric entropy). It means that the chaotic dynamics of MTDSs is much
more complicated than that of single delay systems. As a result, it is hard to reconstruct and
predict the motion of MTDSs.
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Fig. 3. Largest LEs and Kolmogorov-Sinai entropy versus α of the two delays Mackey-Glass
system.

Illustrated in Figs. 4 and 5 is the largest LEs as well as Kolmogorov-Sinai entropy with respect
to the value of m1 and m2. There, the value of α, τ1 and τ2 is kept constant at 2.1, 2.5 and
5.0, respectively. Noticeably, the two-delays system is with weak feedback in the range of
small value of m1, or the two-feedbacks system tends to single feedback one. In such the
range, the curves of largest LEs and Kolmogorov-Sinai entropy are in ‘V’ shape for negative
value of m2 as depicted in Figs. 4(a) and 4(b). This is also observed in the curves of metric
entropy in Fig. 4(b). In other words, the dynamics of MTDSs are intuitively more complicated
than that of STDSs. By observing the curves in Figs. 5(a) and 5(b), these characteristics in the
case of changing the value of m2 are a bit different. The range of m2 offers the ‘V’ shape is
around 3.0 for large negative values of m1, i.e., −14.5 and −9.5. It can be interpreted that this
characteristic depends on the value of delays associated with mi. As a particular case, the
result shows that the trend of largest LEs and metric entropy depends on the value of m1 and
m2.
In Fig. 6, the largest LEs and Kolmogorov-Sinai entropy related to the value of τ1 and τ2 are
presented, and it is clear that they strongly depend on the value of τ1 and τ2. There, the value
of other parameters is set at m1 = −15.0, m2 = −10.0 and α = 2.1. The system still exhibits
chaotic dynamics even though the dependence of largest LEs and metric entropy on the value
of τ1 and τ2 is observed.
In summary, the dynamics of MTDSs is firmly more complicated than that of STDSs. In other
words, MTDSs present significances to the secure communication application.
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Fig. 4. Largest LEs and Kolmogorov-Sinai entropy versus m1 of the two-delays Mackey-Glass
system.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Largest Lyapunov Enponents versus m
2
 at different values of m

1

m    (arb. units)
2

λ m
ax

 (b
it/

s)

m
1
=−15.0

m
1
=−9.0

m
1
=−3.0

m
1
=3.0

m
1
=9.0

m
1
=15.0

(a) LLEs versus m2

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kolmogorov−Sinai Entropy versus m
2
 at different values of m

1

m   (arb. units)
2

KS
  (

bi
ts

/s
)

m
1
=−15.0

m
1
=−9.0

m
1
=−3.0

m
1
=3.0

m
1
=9.0

m
1
=15.0

(b) Kolmogorov-Sinai entropy versus m2

Fig. 5. Largest LEs and Kolmogorov-Sinai entropy versus m2 of the two-delays Mackey-Glass
system.

3. The proposed synchronization models of coupled MTDSs

We consider synchronization models of coupled MTDSs with restriction to the only one
state variable. In addition, various schemes of synchronization are investigated on such
the synchronization models. The main differences between these proposed models and
conventional ones are that dynamical equations for the master and slave are in the
form of multiple time delays and the driving signal is constituted by sum of nonlinear
transforms of delayed state variable. The condition for synchronization is still based on the
Krasovskii-Lyapunov theory. Proofs of the sufficient condition for considered synchronous
schemes will also be shown.

3.1 Synchronization of coupled identical MTDSs
We start considering the synchronization of MTDSs with the dynamical equations in the form
of one dimension defined by
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Fig. 6. Largest LEs and Kolmogorov-Sinai entropy versus τ1 and τ2 of the two-delays
Mackey-Glass system.

Master:
dx
dt

= −αx+
P

∑
i=1

mi f (xτi ) (12)

Driving signal:

DS(t) =
Q

∑
j=1

kj f (xτP+j) (13)

Slave:
dy
dt

= −αy+
P

∑
i=1

ni f (yτi) + DS(t) (14)

where α,mi, ni, kj, τi(τi ≥ 0) ∈ �; integers P, Q (Q ≤ P), f (.) is the differentiable generic
nonlinear function. xτi and yτi stand for delayed state variables x(t − τi) and y(t − τi),
respectively. Note that, the form of f (.) and the value of P are shared in both the master’s
and slave’s equations. As shown in Eq. (13), the driving signal is constituted by sum of
multiple nonlinear transforms of delayed state variable, and it is generated by driving signal
generator (DSG) as illustrated in Fig. 7. The master’s and slave’s equations in Eqs. (12)
and (14) with {P = 1, f (x) = x

1+xb } and {P = 1, f (x) = sin(x)} turn out being the
well-known Mackey-Glass (Mackey & Glass, 1977) and Ikeda systems (Ikeda & Matsumoto,
1987), respectively.

It is clear to observe from the proposed synchronization model given in Eqs. (12)-(14) that

DS(t)x(t)

Fig. 7. The proposed synchronization model of MTDSs.

the structure of slave is identical to that of master, except for the presence of driving signal in
the dynamical equation of slave.
In consideration to the synchronization condition, so far, there are two strategies (Pyragas,
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1998a) which are used for dealing with synchronization of time-delay systems. The first one
is based on the Krasovskii-Lyapunov theory (Hale & Lunel, 1993; Krasovskii, 1963) while
the other one is based on the perturbation theory (Pyragas, 1998a). Note that, perturbation
theory is used suitably for the case that the delay length is large (τi → ∞). And, the
Krasovskii-Lyapunov theory can be used for the case of multiple time-delays as in this context.
In the following subsections, this model is investigated with different synchronous schemes,
i.e., lag, anticipating, projective-lag, and projective-anticipating.

3.1.1 Lag synchronization
As a general case, lag synchronization refers to the means that the slave’s state variable is
retarded with a time length in compared to the master’s. Here, lag synchronization has
been studied in coupled MTDSs described in Eqs. (12)-(14) with the desired synchronization
manifold defined by

y(t) = x(t− τd) (15)

where τd ∈ �+ is a time-delay, called a manifold’s delay. We define the synchronization error
upon expected synchronization manifold in Eq. (15) as

Δ(t) = y(t)− x(t− τd) (16)

And, the dynamics of synchronization error is

dΔ
dt

=
dy
dt
− dx(t− τd)

dt
(17)

By applying the delay of τd to Eq. (12), we get dx(t−τd)
dt = −αx(t − τd) +

P
∑
i=1

mi f (xτi+τd ).

Then, substituting dx(t−τd)
dt , yτi = xτi+τd + Δτi , and Eq. (14) into Eq. (17), the dynamics of

synchronization error becomes

dΔ
dt

=
dy
dt
− dx(t− τd)

dt

=

⎡
⎣−αy+

P

∑
i=1

ni f (yτi) +
Q

∑
j=1

kj f (xτP+j)

⎤
⎦−

[
−αx(t− τd) +

P

∑
i=1

mi f (xτi+τd )

]

= −αΔ +
P

∑
i=1

ni f (xτi+τd + Δτi) +
Q

∑
j=1

kj f (xτP+j)−
P

∑
i=1

mi f (xτi+τd )

(18)

τP+j = τi + τd (19)

It is assumed that delays in Eq. (18) are chosen so that Eq. (19) is satisfied. Hence, Eq. (18) is
rewritten as

dΔ
dt

= −αΔ +
P

∑
i=1

ni f (xτi+τd + Δτi)−
P,Q

∑
i=1,j=1

[
mi − kj

]
f (xτi+τd ) (20)

mi − kj = ni (21)

It is easy to realize that the derivative of f (x+ δ)− f (x) = f ′(x)δ exists if f (.) is differentiable,
bounded, and δ is small enough. Also suppose that the value of coefficients in Eq. (20) is
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adopted so as the relation in Eq. (21) is fulfilled in pair. Note from Eqs. (19) and (21) that only
some components in the master’s and slave’s equations are selected for such the relations.
Therefore, Eq. (20) reduces to

dΔ
dt

= −αΔ +
P

∑
i=1

ni f
′(xτi+τd + Δτi)Δτi (22)

By applying the Krasovskii-Lyapunov theory (Hale & Lunel, 1993; Krasovskii, 1963) to the
case of multiple time-delays, the sufficient condition to achieve limt→∞ Δ(t) = 0 from Eq. (22)
is expressed as

α >
P

∑
i=1
|ni| sup

∣∣ f ′(xτi+τd)
∣∣ (23)

where sup | f ′(.)| stands for the supreme limit of | f ′(.)|. It is easy to see that the sufficicent
condition for synchronization is obtained under a series of assumptions. Noticably, the linear
delayed system of Δ given in Eq. (22) is with time-dependent coefficients. The specific
example shown in Section 4 with coupled modified Mackey-Glass systems will demonstrate
and verify for the case.
Next, combination synchronous scheme will be presented, there, the mentioned synchronous
scheme of coupled MTDSs is associated with projective one.

3.1.2 Projective-lag synchronization
In this section, the lag synchronization of coupled MTDSs is investigated in a way that the
master’s and slave’s state variables correlate each other upon a scale factor. The dynamical
equations for synchronous system are defined in Eqs. (12)- (14). The desired projective-lag
manifold is described by

ay(t) = bx(t− τd) (24)

where a and b are nonzero real numbers, and τd is the time lag by which the state variable of
the master is retarded in comparison with that of the slave. The synchronization error can be
written as

Δ(t) = ay(t)− bx(t− τd), (25)

And, dynamics of synchronization error is

dΔ
dt

= a
dy
dt
− b

dx(t− τd)

dt
. (26)

By substituting appropriate components to Eq. (26), the dynamics of synchronization error
can be rewritten as

dΔ
dt

= a

⎡
⎣−αy+

P

∑
i=1

ni f (yτi ) +
Q

∑
j=1

kj f (xτP+j)

⎤
⎦− b

[
−αx(t− τd) +

P

∑
i=1

mi f (xτi+τd)

]
(27)

Moreover, yτi can be deduced from Eq. (25) as

yτi =
bxτi+τd + Δτi

a
(28)
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And, Eq. (27) can be represented as

dΔ
dt

=a

⎡
⎣−αy+

P

∑
i=1

ni f (
bxτi+τd + Δτi

a
) +

Q

∑
j=1

kj f (xτP+j)

⎤
⎦− b

[
−αx(t− τd) +

P

∑
i=1

mi f (xτi+τd )

]

(29)
Let us assume that the relation of delays is as given in Eq. (19), τP+j = τi + τd. The error
dynamics in Eq. (29) becomes

dΔ
dt

= −αΔ +
P,Q

∑
i=1,j=1

[
ani f (

bxτi+τd + Δτi

a
)− (bmi − akj) f (xτi+τd)

]
(30)

The right-hand side of Eq. (28) can be represented as

bxτi+τd + Δτi

a
= xτi+τd + Δ

τ
(app)
i

(31)

where τ
(app)
i is a time-delay at which the synchronization error satisfies Eq. (31). By replacing

right-hand side of Eq. (31) to Eq. (30), The error dynamics can be rewritten as

dΔ
dt

= −αΔ +
P,Q

∑
i=1,j=1

[
ani f (xτi+τd + Δ

τ
(app)
i

)− (bmi − akj) f (xτi+τd )

]
(32)

Suppose that the relation of parameters in Eq. (32) as follows

bmi − akj = ani (33)

If Δ
τ
(app)
i

is small enough and f (.) is differentiable, bounded, then Eq. (32) can be reduced to

dΔ
dt

= −αΔ +
P

∑
i=1

ani f
′(xτi+τd)Δτ

(app)
i

(34)

By applying the Krasovskii-Lyapunov theory (Hale & Lunel, 1993; Krasovskii, 1963) to this
case, the sufficient condition for synchronization is expressed as

α >
P

∑
i=1
|ani| sup

∣∣ f ′(xτi+τd )
∣∣ (35)

It is clear that the main difference of this scheme in comparison with lag synchronization is
the existence of scale factor. This leads to the change in the synchronization condition. In fact,
projective-lag synchronization becomes lag synchronization when scale factor is equivalent to
unity, but the relative value of α is changed in the sufficient condition regarding to the bound.
This allows us to arrange multiple slaves with the same structure which are synchronized
with a certain master under various scale factors. Anyways, the value of ni and kj must be
adjusted correspondingly. This can not be the case by using lag synchronization as presented
in the previous section, that is, only one slave with a certain structure is satisfied.
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3.1.3 Anticipating synchronization
In this section, anticipating synchronization of coupled MTDSs is presented, in which the
master’s motion can be anticipated by the slave’s. The proposed model given in Eqs. (12)-(14)
is investigated with the desired synchronization manifold of

y(t) = x(t+ τd) (36)

where τd ∈ �+ is the time length of anticipation. It is also called a manifold’s delay because
the master’s state variable is retarded in compared with the slave’s. Synchronization error in
this case is

Δ(t) = y(t)− x(t+ τd) (37)

Similar to the scheme of lag synchronization, the dynamics of synchronization error is written
as

dΔ
dt

=
dy
dt
− dx(t+ τd)

dt
(38)

By substituting dx(t+τd)
dt = −αx(t+ τd) +

P
∑
i=1

mi f (xτi−τd), yτi = xτi−τd + Δτi , and dy
dt into Eq.

(38), the dynamics of synchronization error is described by

dΔ
dt

=
dy
dt
− dx(t+ τd)

dt

=

⎡
⎣−αy+

P

∑
i=1

ni f (yτi) +
Q

∑
j=1

kj f (xτP+j)

⎤
⎦−

[
−αx(t+ τd) +

P

∑
i=1

mi f (xτi−τd )

]

= −αΔ +
P

∑
i=1

ni f (xτi−τd + Δτi) +
Q

∑
j=1

kj f (xτP+j)−
P

∑
i=1

mi f (xτi−τd )

(39)

Assume that τP+j in Eq. (39) are fulfilled the relation of

τP+j = τi − τd (40)

delays must be non-negative, thus, τi must be equal to or greater than τd in Eq. (19).
Equation (39) is represented as

dΔ
dt

= −αΔ +
P

∑
i=1

ni f (xτi−τd + Δτi)−
P,Q

∑
i=1,j=1

[
mi − kj

]
f (xτi−τd ) (41)

Applying the same reasoning in lag synchronization to this case, parameters satisfies the
relation given in Eq. (21). Equation (41) reduces to

dΔ
dt

= −αΔ +
P

∑
i=1

ni f
′(xτi−τd )Δτi (42)

And, the Krasovskii-Lyapunov theory (Hale & Lunel, 1993; Krasovskii, 1963) is applied to Eq.
(42), hence, the sufficient condition for synchronization for anticipating synchronization is

α >
P

∑
i=1
|ni| sup

∣∣ f ′(xτi−τd)
∣∣ (43)
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It is clear from (35) and (43) that there is small difference made to the relation of delays in
comparison to lag synchronization, and a completely new scheme is resulted. Therefore, the
switching between schemes of lag and anticipating synchronization can be obtained in such a
simple way. This may be exploited for various purposes including secure communications.

3.1.4 Projective-anticipating synchronization
Obviously, projective-anticipating synchronization is examined in a very similar way to that
dealing with the scheme of projective-lag synchronization. The dynamical equations for
synchronous system are as given in Eq. (12)- (14). The considered projective-anticipating
manifold is as

ay(t) = bx(t+ τd) (44)

where a and b are nonzero real numbers, and τd is the time lag by which the state variable
of the slave is retarded in comparison with that of the master. The synchronization error is
defined as

Δ = ay− bx(t+ τd) (45)

Dynamics of synchronization error is as

dΔ
dt

= a
dy
dt
− b

dx(t+ τd)

dt
. (46)

By substituting dy
dt and dx(t+τd)

dt to Eq. (46), the dynamics of synchronization error becomes

dΔ
dt

= a

⎡
⎣−αy+

P

∑
i=1

ni f (yτi ) +
Q

∑
j=1

kj f (xτP+j)

⎤
⎦− b

[
−αx(t+ τd) +

P

∑
i=1

mi f (xτi−τd)

]
(47)

It is clear that yτi can be deduced from Eq. (45) as

yτi =
bxτi−τd + Δτi

a
(48)

Hence, Eq. (47) can be represented as

dΔ
dt

= a

⎡
⎣−αy+

P

∑
i=1

ni f (
bxτi−τd + Δτi

a
) +

Q

∑
j=1

kj f (xτP+j)

⎤
⎦

− b

[
−αxτd +

P

∑
i=1

mi f (xτi−τd )

]
(49)

Similar to anticipating synchronization, the relation of delays is chosen as given in Eq. (40),
τP+j = τi − τd. The error dynamics in Eq. (49) is rewritten as

dΔ
dt

= −αΔ +
P,Q

∑
i=1,j=1

[
ani f (

bxτi−τd + Δτi

a
)− (bmi − akj) f (xτi−τd)

]
(50)

The right-hand side of Eq. (48) can be equivalent to

bxτi−τd + Δτi

a
= xτi−τd + Δ

τ
(app)
i

(51)
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where τ
(app)
i is a time-delay satisfying Eq. (51). Therefore, the error dynamics can be rewritten

as
dΔ
dt

= −αΔ +
P,Q

∑
i=1,j=1

[
ani f (xτi−τd + Δ

τ
(app)
i

)− (bmi − akj) f (xτi−τd )

]
(52)

Suppose that the relation of parameters in Eq. (52) is as given in Eq. (33), bmi − akj = ani.
Δ

τ
(app)
i

is small enough, f (.) is differentiable and bounded, hence, Eq. (52) is reduced to

dΔ
dt

= −αΔ +
P

∑
i=1

ani f
′(xτi−τd)Δτ

(app)
i

(53)

The sufficient condition for synchronization can be expressed as

α >
P

∑
i=1
|ani| sup

∣∣ f ′(xτi−τd )
∣∣ (54)

It is easy to see that the change from anticipating into projective-anticipating synchronization
is similar to that from lag to projective-lag one. It is realized that transition from the lag to
anticipating is simply done by changing the relation of delays. This is easy to be observed on
their sufficient conditions.

3.2 Synchronization of coupled nonidentical MTDSs
It is easy to observe from the synchronization model presented in Eqs. (12)-(14) that the
value of P and the function form of f (.) are shared in the master’s and slave’s equations.
It means that the structure of the master is identical to that of slave. In other words, the
proposed synchronization model above is not a truly general one. In this section, the proposed
synchronization model of coupled nonidentical MTDSs is presented, there, the similarity in
the master’s and slave’s equations is removed. The dynamical equations representing for the
synchronization are defined as
Master:

dx
dt

= −αx+
P

∑
i=1

mi f
(M)
i (x

τ
(M)
i

) (55)

Driving signal:

DS(t) =
Q

∑
j=1

kj f
(DS)
j (x

τ
(DS)
j

) (56)

Slave:
dy
dt

= −αy+
R

∑
i=1

ni f
(S)
i (y

τ
(S)
i
) + DS(t) (57)

where α,mi, ni, kj, τ
(M)
i , τ

(DS)
j , τ

(S)
i ∈ �; P, Q and R are integers. The delayed state variables

x
τ
(M)
i

, x
τ
(DS)
j

and y
τ
(S)
i

stand for x(t− τ
(M)
i ), x(t− τ

(DS)
j ) and y(t− τ

(S)
i ), respectively. f (M)

i (.),

f (DS)
j (.) and f (S)i (.) are differentiable, generic, and nonlinear functions. The superscripts (M),

(S) and (DS) associated with main symbols (delay, function, set of function forms) indicate
that they are belonged to the master, slave and driving signal, respectively.
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The non-identicalness between the master’s and slave’s configuration can be clarified by
defining the set of function forms, S = {Fi; i = 1..N}, in which Fi (i = 1..N) represents for

the function form of f (M)
i (.), f (DS)

j (.) and f (S)i (.) in Eqs. (55)-(57). The subsets of SM, SS and
SDSG are collections of function forms of the master, slave and DSG, respectively. It is assumed
that the relation among subsets is SDSG ⊆ SM ∪ SS. It is easy to realize that the structure of
master is completely nonidentical to that of slave if SI = SM ∩ SS ≡ Φ. Otherwise, if there are
I components of nonlinear transforms whose function forms and value of delays are shared

between the master’s and slave’s equations, i.e., SI = SM ∩ SS �= Φ and τ
(M)
i = τ

(S)
i for

i = 1..I. These components are called identicalness ones which make pairs of { f (M)(x
τ
(M)
i

) vs.

f (S)(y
τ
(S)
i
)} for i = 1..I.

Therefore, there are two cases needed to consider specifically: (i) the structure of master is
partially identical to that of slave by means of identicalness components, and (ii) the structure
of master is completely nonidentical to that of slave. In any cases, it is easy to realize from
the relation among SM, SS and SDSG that the difference between the master’s and slave’s
equations can be complemented by the DSG’s equation. In other words, function forms and
value of parameters will be chosen appropriately for the driving signal’s equation so that
the Krasovskii-Lyapunov theory can be used for considering the synchronization condition
in a certain case. For simplicity, only scheme of lag synchronization with the synchronization
manifold of y(t) = x(t − τd) is studied, and other schemes can be extended as in a way of
synchronization of coupled identical MTDSs.

3.2.1 Structure of master partially identical to that of slave
Suppose that there are I identicalness components shared between the master’s and slave’s
equations, hence, Eqs. (55) and (57) can be decomposed as
Master:

dx
dt

= −αx+
I

∑
i=1

mi f
(M)
i (x

τ
(M)
i

) +
P

∑
i=I+1

mi f
(M)
i (x

τ
(M)
i

) (58)

Slave:
dy
dt

= −αy+
I

∑
i=1

ni f
(S)
i (y

τ
(S)
i
) +

R

∑
i=I+1

ni f
(S)
i (y

τ
(S)
i
) +DS(t) (59)

where f (M)
i is with the form identical to f (S)i and τ

(M)
i = τ

(S)
i for i = 1..I. They are pairs of

identicalness components. The driving signal’s equation in Eq. (56) is chosen in the following
form

DS(t) =
I

∑
j=1

kj f
(DS)
j (x

τ
(DS)
j

) +
Q

∑
j=I+1

kj f
(DS)
j (x

τ
(DS)
j

) (60)

where forms of f (DS)
j (.) for j = 1..I are, in pair, identical to that of f (M)

i as well as of f (S)i for
i = 1..I. Let’s consider the lag synchronization manifold of

y(t) = x(t− τd) (61)

And, the synchronization error is

Δ(t) = y(t)− x(t− τd) (62)
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Hence, the dynamics of synchronization error is expressed by

dΔ
dt

=
dy
dt
− dx(t− τd)

dt

= −αy+
I

∑
i=1

ni f
(S)
i (y

τ
(S)
i
) +

R

∑
i=I+1

ni f
(S)
i (y

τ
(S)
i
) +

I

∑
j=1

kj f
(DS)
j (x

τ
(DS)
j

)+

+
Q

∑
j=I+1

kj f
(DS)
j (x

τ
(DS)
j

) + αx(t− τd)−
I

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

)−
P

∑
i=I+1

mi f
(M)
i (x

τ
(M)
i +τd

)

(63)
By applying delay of τ

(S)
i to Eq. (62), y

τ
(S)
i

can be deduced as

y
τ
(S)
i

= x
τ
(S)
i +τd

+ Δ
τ
(S)
i

(64)

By substituting y(S)τi to Eq. (63), the dynamics of synchronization error can be rewritten as

dΔ
dt

= −αΔ +
I

∑
i=1

ni f
(S)
i (x

τ
(S)
i +τd

+ Δ
τ
(S)
i
) +

R

∑
i=I+1

ni f
(S)
i (x

τ
(S)
i +τd

+ Δ
τ
(S)
i
) +

I

∑
j=1

kj f
(DS)
j (x

τ
(DS)
j

)

+
Q

∑
j=I+1

kj f
(DS)
j (x

τ
(DS)
j

)−
I

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

)−
P

∑
i=I+1

mi f
(M)
i (x

τ
(M)
i +τd

)

(65)
Suppose that the relation of delays in the fourth and sixth terms at the right-hand side of Eq.
(65) is

τ
(DS)
j = τ

(M)
i + τd (≡ τ

(S)
i + τd) f or j, i = 1..I (66)

Hence, Eq. (65) can be reduced to

dΔ
dt

= −αΔ +
I

∑
i=1

ni f
(S)
i (x

τ
(S)
i +τd

+ Δ
τ
(S)
i
)−

I

∑
i=1

(mi − ki) f
(M)
i (x

τ
(M)
i +τd

) +
Q

∑
j=I+1

kj f
(DS)
j (x

τ
(DS)
j

)−

−
P

∑
i=I+1

mi f
(M)
i (x

τ
(M)
i +τd

) +
R

∑
i=I+1

ni f
(S)
i (x

τ
(S)
i +τd

+ Δ
τ
(S)
i
)

(67)
Also suppose that function forms and value of parameters of the fourth term of Eq. (67) (the
second right-hand term of Eq. (60)) are chosen so that the last three terms of Eq. (67) satisfy
the following equation

Q

∑
j=I+1

kj f
(DS)
j (x

τ
(DS)
j

)−
P

∑
i=I+1

mi f
(M)
i (x

τ
(M)
i +τd

) +
R

∑
i=I+1

ni f
(S)
i (x

τ
(S)
i +τd

+ Δ
τ
(S)
i
) = 0 (68)
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Let us assume that Q = P + R − I. The first left-hand term is decomposed, and Eq. (68)
becomes

P−I

∑
j1=1

kI+j1 f
(DS)
I+j1 (xτ

(DS)
I+j1

) +
R−I

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

)

−
P−I

∑
i=1

mI+i f
(M)
I+i (xτ

(M)
I+i +τd

) +
R−I

∑
i=1

nI+i f
(S)
I+i(xτ

(S)
I+i+τd

+ Δ
τ
(S)
I+i
) = 0

(69)

Undoubtedly, Eq. (69) can be fulfilled if following assumptions are made: kI+j1 = mI+i,

τ
(DS)
I+j1 = τ

(M)
I+i + τd and forms of f (DS)

I+j1 (.) are identical to that of f (M)
I+i (.) for i, j1 = 1..(P − I),

and kP+j2 = −nI+i, τ
(DS)
P+j2 = τ

(S)
I+i + τd, Δ

τ
(S)
I+i

is equal to zero as well as the form of f (DS)
P+j2(.) is

identical to that of f (S)I+i(.) for i, j2 = 1..(R− I). Thus, Eq. (67) can be represented as

dΔ
dt

= −αΔ +
I

∑
i=1

ni f
(S)
i (x

τ
(S)
i +τd

+ Δ
τ
(S)
i
)−

I

∑
i=1

(mi − ki) f
(M)
i (x

τ
(M)
i +τd

) (70)

According to above assumptions, τ
(S)
i = τ

(M)
i and forms of f (M)

i (.) being identical to those of

f (M)
i (.) for i = 1..I have been made. Here, further suppose that functions f (M)

i (.) and f (S)i (.)
are bounded. If synchronization errors Δ

τ
(S)
i

are small enough and mi − kj = ni for i = 1..I,

Eq. (70) can be reduced to

dΔ
dt

= −αΔ +
I

∑
i=1

ni f
(S)′
i (x

τ
(S)
i +τd

)Δ
τ
(S)
i

(71)

where f (S)
′

i (.) is the derivative of f (S)i (.). By applying the Krasovskii-Lyapunov theory (Hale
& Lunel, 1993; Krasovskii, 1963) to the case of multiple time-delays in Eq. (71), the sufficient
condition for synchronization can be expressed as

α >
I

∑
i=1
|ni| sup

∣∣∣∣ f (S)′i (x
τ
(S)
i +τd

)

∣∣∣∣ (72)

It turns out that the difference in the structures of the master and slave can be complemented
in the equation of driving signal. In order to test the proposed scheme, Example 5 is
demonstrated in Section 4, in which the master’s equation is in the heterogeneous form and
the slave’s is in the multiple time-delay Ikeda equation.

3.2.2 Structure of master completely nonidentical to that of slave
In this section, the synchronous system given in Eqs. (58)-(59) is examined, in which there
is no identicalness component shared between the master’s and slave’s equations. In other
words, the function set is of SI = SM ∩ SS = Φ. Therefore, the driving signal’s equation
must contain all function forms of the master’s and slave’s equations or SDSG = SM ∪ SS and
Q = P+ R. The driving signal’s equation Eq. (56) can be decomposed to

DS(t) =
P

∑
j1=1

kj1 f
(DS)
j1 (x

τ
(DS)
j1

) +
R

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

) (73)
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And, the synchronization error Eq. (62) can be represented as below

dΔ
dt

=
dy
dt
− dx(t− τd)

dt

= −αy+
R

∑
i=1

ni f
(S)
i (y

τ
(S)
i
) +

P

∑
j1=1

kj1 f
(DS)
j1 (x

τ
(DS)
j1

)

+
R

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

) + αx(t− τd)−
P

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

)

= −αΔ +
R

∑
i=1

ni f
(S)
i (y

τ
(S)
i
) +

R

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

+
P

∑
j1=1

kj1 f
(DS)
j1 (x

τ
(DS)
j1

)−
P

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

)

(74)

By substituting y
τ
(S)
s

from Eq. (64) into Eq. (74), the dynamics of synchronization error is
rewritten as

dΔ
dt

= −αΔ +
R

∑
i=1

ni f
(S)
i (x

τ
(S)
i +τd

+ Δ
τ
(S)
i
) +

R

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

)

+
P

∑
j1=1

kj1 f
(DS)
j1 (x

τ
(DS)
j1

)−
P

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

)

(75)

Assume that value of parameters and function forms of the first right-hand term of Eq. (73)
are chosen so that the relation between the last two right-hand terms of Eq. (75) is as

P

∑
j1=1

kj1 f
(DS)
j1 (x

τ
(DS)
j1

)−
P

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

) = 0 (76)

Equation Eq. (76) is fulfilled if the relation is as kj1 = mi, τ
(DS)
j1 = τ

(M)
i + τd and the form

of f (DS)
j1 (.) is identical to that of f (M)

i (.) for i, j1 = 1..P. At this point, the dynamics of
synchronization error in (75) can be reduced to

dΔ
dt

= −αΔ +
R

∑
i=1

ni f
(S)
i (x

τ
(S)
i +τd

+ Δ
τ
(S)
i
) +

R

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

) (77)

As mentioned, the form of f (S)i (.) is identical to that of f (DS)
P+j2(.) in pair. Here, we suppose

that coefficients and delays in Eq. (77) are adopted as kP+j2 = −ni and τ
(DS)
P+j2 = τ

(S)
i + τd for

i, j2 = 1..P. If Δ
τ
(S)
i

is small enough and functions f (S)i are bounded, Eq. (77) can be rewritten
as

dΔ
dt

= −αΔ +
R

∑
i=1

ni f
(S)′
i (x

τ
(S)
i +τd

)Δ
τ
(S)
i

(78)
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where f (S)
′

i (.) is the derivative of f (S)i (.). Similarly, the synchronization condition is obtained
by applying the Krasovskii-Lyapunov (Hale & Lunel, 1993; Krasovskii, 1963) theory to Eq.
(78); that is

α >
R

∑
i=1
|ni| sup

∣∣∣∣ f (S)′i (x
τ
(S)
i +τd

)

∣∣∣∣ (79)

It is undoubtedly that for a certain master and slave in the form of MTDS, we always
obtained synchronous regime. Example 6 in Section 4 is given to verify for synchronization of
completely nonidentical MTDSs; the multidelay Mackey-Glass and multidelay Ikeda systems.

4. Numerical simulation for synchronous schemes on the proposed models

In this subsection, a number of specific examples demonstrate and verify for the general
description. Each example will correspond to a proposal in above section.

Example 1:
This example illustrates the lag synchronous scheme in coupled identical MTDSs given in
Section 3.1.1. Let’s consider the synchronization of coupled six-delays Mackey-Glass systems
with the coupling signal constituted by the four-delays components. The dynamical equations
are as
Master:

dx
dt

= −αx+
P=6

∑
i=1

mi
xτi

1 + xbτi
(80)

Driving signal:

DS(t) =
Q=4

∑
j=1

kj
xP+j

1 + xbτP+j

(81)

Slave:
dy
dt

= −αy+
P=6

∑
i=1

ni
xτi

1 + xbτi
+ DS(t) (82)

Moreover, the supreme limit of the function f ′(x) is equal to (b−1)2

4b at x =
(
b+1
b−1

) 1
b (Pyragas,

1998a). The relation of delays and of parameters is chosen as: τ7 = τ1 + τd, τ8 = τ2 + τd,
τ9 = τ4 + τd, τ10 = τ5 + τd, m1 − k1 = n1, m2 − k2 = n2, m3 = n3, m4 − k3 = n4, m5 − k4 = n5,
m6 = n6.
The value of delays and parameters are adopted as: b = 10, α = 12.3, m1 = −20.0,
m2 = −15.0, m3 = −1.0, m4 = −16.0, m5 = −25.0, m6 = −1.0, n1 = −1.0, n2 = −1.0,
n3 = −1.0, n4 = −1.0, n5 = −1.0, n6 = −1.0, k1 = −19.0, k2 = −14.0, k3 = −15.0, k4 = −24.0,
τd = 5.6, τ1 = 1.2, τ2 = 2.3, τ3 = 3.4, τ4 = 4.5, τ5 = 5.6, τ6 = 6.7, τ7 = 6.8, τ8 = 7.9, τ9 = 10.1,
τ10 = 11.2. Illustrated in Fig. 8 is the simulation result for the synchronization manifold of
y(t) = x(t − 5.6). Obviously, the lag existing in the state variables is observed in Fig. 8(a).
Establishment of the synchronization manifold can be seen through the portrait of x(t− 5.6)
versus y(t) in Fig. 8(b). Moreover, the synchronization error vanishes in time evolution as
shown in Fig. 8(c). As a result, the desired synchronization manifold is firmly achieved.
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(c) Synchronization error Δ(t) = y(t)− x(t− 5.6)

Fig. 8. Simulation result of lag synchronization of coupled six-delays Mackey-Glass systems.

Example 2:
This example demonstrates the description of anticipating synchronization of coupled
identical MTDSs given in Section 3.1.3. The anticipating synchronous scheme is examined
in coupled four-delays Ikeda systems with the dynamical equations given as follows
Master:

dx
dt

= −αx+
P=4

∑
i=1

mi sin xτi (83)

Driving signal:

DS(t) =
Q=2

∑
j=1

kj sin xτP+j (84)

Slave:
dy
dt

= −αy+
P=4

∑
i=1

ni sin yτi + DS(t) (85)
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Following to above description, the relation of parameters and delays is chosen as: m1 = n1,
m2− k1 = n2, m3 = n3, m4− k2 = n4, τ5 = τ2− τd, τ6 = τ4− τd. Anticipating synchronization
manifold considered in this example is y(t) = x(t+ τd), and chosen τd = 6.0. The adopted
value of parameters and delays for simulation are as: α = 2.5, m1 = −0.5, m2 = −13.5,
m3 = −0.6, m4 = −14.6, n1 = −0.5, n2 = −0.9, n3 = −0.6, n4 = −0.2, k1 = −12.6,
k2 = −14.4, τ1 = 1.5, τ2 = 7.2, τ3 = 2.6, τ4 = 8.4, τ5 = 1.2, τ6 = 2.4.
The simulation result is displayed in Fig. 9. It is realized from Fig. 9(a) that the slave
anticipates the master’s motion, and the synchronization manifold of y(t) = x(t + 6.0) is
established as illustrated in Fig. 9(b), with vanishing synchronization error as depicted in
Fig. 9(c).
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(c) Synchronization error Δ(t) = y(t)− x(t+ 6.0)

Fig. 9. Simulation result of anticipating synchronization of coupled four-delays Ikeda
systems

Example 3:
To support for projective-lag synchronization as given in Section 3.1.2, this example deals
with synchronization of coupled six-delays Mackey-Glass systems with the driving signal
constituted by the four-delays components. The dynamical equations are expressed in Eqs.
(80)- (82). For the synchronization manifold of ay(t) = bx(t − τd), the relations between
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the value of delays and parameters are chosen as τ7 = τd + τ1, τ8 = τd + τ2, τ9 = τd + τ4,
τ10 = τd + τ6, bm1 − ak1 = an1, bm2 − ak2 = an2, m3 = n3, bm4 − ak3 = an4, m5 = n5,
bm6 − ak4 = an6. According to Eq. (35), the sufficient condition for synchronization is

α >
P=6

∑
i=1
|ani| sup

∣∣ f ′(xτi+τd)
∣∣ . (86)

The value of delays and parameters adopted for simulation are a = 1.0, b = 3.0, c = 10,
α = 6.3, τd = 5.6, τ1 = 6.7, τ2 = 3.4, τ3 = 4.5, τ4 = 5.6, τ5 = 2.3, τ6 = 1.2, τ7 = 12.3, τ8 = 9.0,
τ9 = 11.2, τ10 = 6.8, m1 = −8.0, m2 = −7.0, m3 = −0.3, m4 = −6.7, m5 = −0.2, m6 = −5.4,
n1 = −0.6, n2 = −0.5, n3 = −0.3, n4 = −0.8, n5 = −0.2, n6 = −0.7, k1 = −23.4, k2 = −20.5,
k3 = −19.3, and k4 = −15.5.
The simulation result is illustrated in Fig. 10 with synchronization manifold of 1.0y(t) =
3.0x(t− 5.6). The scale factor can be seen by means of the scale of vertical axes in Fig. 10(a).
The scale factor can also be observed via the slope of the synchronization line in the portrait
of x(t− 5.6) versus y(t) shown in Fig. 10(b). Moreover, the synchronization error is reduced

with respect to time as displayed in Figs. 10(c). However, the level of Δ(app)
τi in the linear

approximation given in Eq. (31) is dependent on the difference between the value of a and
b, δ = a − b. Therefore, examination on the impact of δ = a − b on the synchronization
error is necessary. As presented in Fig. 10(d) is the relation between the means square error
(MSE) of the synchronization error in whole synchronizing time and δ = a− b. It is clear that
synchronization error is lowest when δ = 0 or a = b.

Example 4:
The description given in Section 3.1.4 is illustrated in this example. Projective-anticipating
synchronization of coupled five-delays Mackey-Glass systems is examined with three-delays
driving signal. The dynamical equations are as
Master:

dx
dt

= −αx+
P=5

∑
i=1

mi
xτi

1 + xcτi
(87)

Driving signal:

DS(t) =
Q=3

∑
j=1

kj
xτP+j

1 + xcτP+j

(88)

Slave:
dy
dt

= −αy+
P=5

∑
i=1

ni
yτi

1 + ycτi
+ DS(t) (89)

The synchronization manifold of ay(t) = bx(t + τd) is studied with the relation of delays
and parameters chosen as: τ6 = τ1 − τd, τ7 = τ3 − τd, τ8 = τ5 − τd, bm1 − ak1 = an1,
m2 = n2, bm3− ak2 = an3, m4 = n4, bm5− ak3 = an5. The value of parameters and delays for
simulation is set at: a = −2.5, b = 1.5, α = 16.3, c = 10, m1 = −16.2, m2 = −0.3, m3 = −14.5,
m4 = −1.0, m5 = −18.6, n1 = −0.4, n2 = −0.3, n3 = −0.8, n4 = −1.0, n5 = −0.7, k1 = 10.12,
k2 = 9.5, k3 = 11.86, τd = 4.6, τ1 = 4.8, τ2 = 3.8, τ3 = 6.2, τ4 = 5.5, τ5 = 4.6, τ6 = 0.6, τ7 = 2.0,
τ8 = 0.4.
The simulation result is depicted in Fig. 11 with the synchronization manifold of −2.5y(t) =
1.5x(t + 4.6). It is easy to observed the scale factor by means of the scale of vertical axes in
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Fig. 10. Simulation result of projective-lag synchronization of coupled six-delays
Mackey-Glass systems

Fig. 11(a). The scale factor can also be observed via the slope of the line illustrated in the
portrait of x(t+ 4.6) versus y(t) in Fig. 11(b).

Example 5:
Synchronization model in this example demonstrate the lag synchronization of partially
identical MTDSs with the general description has been presented in Section 3.2.1. The master’s
and slave’s equations are chosen as
Master:

dx
dt

= −αx+m1sinxτ
(M)
1

+m2sinxτ
(M)
2

+m3sinxτ
(M)
3

+

+m4

x
τ
(M)
4

1 + x8
τ
(M)
4

+m5

x
τ
(M)
5

1 + x10
τ
(M)
5

(90)

202 Time-Delay Systems



(arb. units)

(a
rb

. u
n

it
s)

(a
rb

. u
n

it
s)

(a) Time series of x(t) and y(t)

(arb. units)

(a
rb

. u
n

it
s)

(b) Portrait of x(t+ 4.6) versus y(t)

Fig. 11. Simulation result of projective-anticipating synchronization of coupled five-delays
Mackey-Glass systems

Slave:
dy
dt

= −αy+ n1sinyτ
(S)
1

+ n2sinyτ
(S)
2
+

+ n3sinyτ
(S)
3

+ n4sinyτ
(S)
4

+ DS(t)
(91)

It is easy to observe that the sets of function forms are SM = {sinz, z
1+z8 , z

1+z10 }, SS =

{sinz}. Thus, SI = SM ∩ SS = {sinz} and SDSG ⊆ SM ∪ SS = {sinz, z
1+z8 , z

1+z10 }. It is

assumed that τ
(M)
1 = τ

(S)
1 and τ

(M)
2 = τ

(S)
2 , thus, the pairs of identicalness components are

{sinx
τ
(M)
1

vs. siny
τ
(S)
1
} and {sinx

τ
(M)
2

vs. siny
τ
(S)
2
}. Therefore, the equation for driving signal

must be chosen as

DS(t) = k1sinxτ
(DS)
1

+ k2sinxτ
(DS)
2

+ k3sinxτ
(DS)
3

+

+ k4

x
τ
(DS)
4

1 + x8
τ
(DS)
4

+ k5

x
τ
(DS)
5

1 + x10
τ
(DS)
5

+ k6sinxτ
(DS)
6

+ k7sinxτ
(DS)
7

(92)

Following to the assumption described in the above description for the manifold of y(t) =
x(t− τd), the relation of delays and coefficients is chosen as: m1− k1 = n1, m2− k2 = n2, k3 =

m3, k4 = m4, k5 = m5, k6 = −n3, k7 = −n4, τ
(DS)
1 = τ

(M)
1 + τd (= τ

(S)
1 + τd), τ

(DS)
2 = τ

(M)
2 + τd

(= τ
(S)
2 + τd), τ

(DS)
3 = τ

(M)
3 + τd, τ

(DS)
4 = τ

(M)
4 + τd, τ

(DS)
5 = τ

(M)
5 + τd, τ

(DS)
6 = τ

(S)
3 + τd, and

τ
(DS)
7 = τ

(S)
4 + τd. In simulation, the value of parameters are adopted as: α = 2.0, m1 = −15.4,

m2 = −16.0, m3 = −0.35, m4 = −20.0, m5 = −18.5, n1 = −0.2, n2 = −0.1, n3 = −0.25,
n4 = −0.4, k1 = −15.2, k2 = −15.9, k3 = −0.35, k4 = −20.0, k5 = −18.5, k6 = 0.25, k7 = 0.4,
τ
(M)
1 = 3.4, τ

(M)
2 = 4.5, τ

(M)
3 = 6.5, τ

(M)
4 = 5.3, τ

(M)
5 = 2.9, τ

(S)
1 = 3.4, τ

(S)
2 = 4.5, τ

(S)
3 = 2.0,

τ
(S)
4 = 7.3, τ

(DS)
1 = 10.4, τ

(DS)
2 = 11.5, τ

(DS)
3 = 13.5, τ

(DS)
4 = 12.3, τ

(DS)
5 = 9.9, τ

(DS)
6 = 9.0,

and τ
(DS)
7 = 14.3.

The simulation result illustrated in Fig. 12 shows that the manifold of y(t) = x(t − 7.0) is
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established and maintained. The manifold’s delay can be seen in Fig. 12(a) and Fig. 12(b). The
synchronization error vanishes eventually as given in Fig. 12(c), it confirms the synchronous
regime of nonidentical MTDSs.
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(c) Synchronization error Δ(t) = y(t)− x(t− 7.0)

Fig. 12. Simulation result of lag synchronization of partially identical MTDSs.

Example 6:
In this example, the demonstration for lag synchronization of completely nonidentical MTDSs
given in Section 3.2.2 is presented. the equations representing for the master and slave are as
Master:

dx
dt

= −αx+m1

x
τ
(M)
1

1 + x6
τ
(M)
1

+m2

x
τ
(M)
2

1 + x8
τ
(M)
2

+m3

x
τ
(M)
3

1 + x10
τ
(M)
3

(93)

Slave:
dy
dt

= −αy+ n1sinyτ
(S)
1

+ n2sinyτ
(S)
2

+ n3sinyτ
(S)
3
+

+ n4sinyτ
(S)
4

+ DS(t)
(94)

It is clear that the sets of function forms are SM = { z
1+z6 , z

1+z8 , z
1+z10 }, SS = {sinz},

SI = SM ∩ SS ≡ Φ. Thus, the subset of function form for DSG is SDSG ⊆ SM ∪ SS =
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{sinz, z
1+z6 , z

1+z8 , z
1+z10 }, and the driving signal’s equation must be chosen as

DS(t) = k1

x
τ
(DS)
1

1 + x6
τ
(DS)
1

+ k2

x
τ
(DS)
2

1 + x8
τ
(DS)
2

+ k3

x
τ
(DS)
3

1 + x10
τ
(DS)
3

+

+ k4sinxτ
(DS)
4

+ k5sinxτ
(DS)
5

+ k6sinxτ
(DS)
6

+ k7sinxτ
(DS)
7

(95)

Following to the general description above, the chosen relation of delays and coefficients for
the manifold of y(t) = x(t− τd) are as: k1 = m1, k2 = m2, k3 = m3, k4 = −n1, k5 = −n2, k6 =

−n3, k7 = −n4, τ
(DS)
1 = τ

(M)
1 + τd, τ

(DS)
2 = τ

(M)
2 + τd, τ

(DS)
3 = τ

(M)
3 + τd, τ

(DS)
4 = τ

(S)
1 + τd,

τ
(DS)
5 = τ

(S)
2 + τd, τ

(DS)
6 = τ

(S)
3 + τd, and τ

(DS)
7 = τ

(S)
4 + τd. And, the value of parameters

and delays are adopted for simulation as: α = 2.5, m1 = −15.5, m2 = −20.2, m3 = −18.4,
n1 = −0.3, n2 = −0.2, n3 = −0.4, n4 = −0.6, k1 = −15.5, k2 = −20.2, k3 = −18.4, k4 = 0.3,
k5 = 0.2, k6 = 0.4, k7 = 0.6, τd = 5.0, τ

(M)
1 = 2.8, τ

(M)
2 = 6.4, τ

(M)
3 = 3.9, τ

(S)
1 = 1.7,

τ
(S)
2 = 6.5, τ

(S)
3 = 4.1, τ

(S)
4 = 8.0, τ

(DS)
1 = 7.8, τ

(DS)
2 = 11.4, τ

(DS)
3 = 8.9, τ

(DS)
4 = 6.7,

τ
(DS)
5 = 11.5, τ

(DS)
6 = 9.1, and τ

(DS)
7 = 13.0.

Shown in Fig. 13 is the time series of state variables, the portrait of x(t − 5.0) versus y(t)
and synchronization error Δ(t) = y(t)− x(t− 5.0), and it is easy to realize that the desired
manifold is created and maintained.

5. Discussion

In this section, the discussion is given on four aspects, i.e., the sufficient condition for
synchronization, the connection between the synchronous schemes in the proposed models,
the form of driving signal and the complicated dynamics of MTDSs in compared to
STDSs. These will confirm the application of the proposed synchronization model in secure
communications.
Firstly, the sufficient conditions for synchronization given in Eqs. (23), (35), (43), (54), (72)
and (79) are loose for adopting value of parameters and delays. It is dependent on value of
parameters and not on delays since f ′(x) is not a piecewise function with respect to x. This
allows to arrange multiple slaves being synchronized with one master at the same time.
Secondly, it is easy to realize from the connection between the synchronous schemes
that transition from lag synchronization to anticipating one can be done by changing the
relation between delays in DSG from τP+j = τi + τd to τP+j = τi − τd (see Eqs. (19)
and (40)). Moreover, the sufficient condition for lag synchronization is identical to that for
anticipating synchronization as presented in Eqs. (23) and (43). Besides, transition from
lag synchronization with the synchronization manifold of y(t) = x(t − τd) in Eq. (15) to
projective-lag synchronization with the manifold of ay(t) = bx(t− τd) given in Eq. (24) has
been done by changing the relation between parameters from mi − kj = ni to bmi − akj = ani
(see Eqs. (21) and (33)); a, b are nonzero real numbers. Similar to the case of transition
from lag synchronization to anticipating one, projective-anticipating synchronization has
been achieved by changing the relation between delays in projective-lag synchronization
from τP+j = τi + τd to τP+j = τi − τd (see Eqs. (19) and (40)) whereas the relation
between parameters and the sufficient condition for synchronization have been kept intact
(see Eqs. (33), (35) and (54)). As a special case, if the value of τd is set to zero, then lag and
anticipating synchronization will become the scheme of complete synchronization of MTDSs
and the schemes of projective-lag and projective-anticipating synchronizations turn into the
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(c) Synchronization error Δ(t) = y(t)− x(t− 5.0)

Fig. 13. Simulation for lag synchronization of completely nonidentical MTDSs.

projective synchronization of MTDSs.
Thirdly, in the proposed model of identical MTDSs, it is observed that the driving signals
given in Eqs. (13) and (56) are in the form of sum of nonlinear transforms, and they are
commonly used for considering all the synchronous schemes. The reason for choosing
such the form is to obtain synchronization error dynamics being in the linear form. Then,
the Krasovskii-Lyapunov theory is applied to get sufficient condition for synchronization.
Assumptions made to f (.) being differentiable and bounded as well as obliged relations made
to parameters and delays are also for this reason. This must be appropriate to given forms of
the master and slave.
Lastly, earlier part of the paper has been mentioned the prediction that MTDSs may hold
more complicated dynamics than STDSs do. This has been confirmed from the result of
numerical simulation given in Section 2.2. It is well-known that Lyapunov exponents and
metric entropy are measure of complexity degree for chaotic dynamics. That is, in the specific
example of two-delays Mackey-Glass system, it is possible to obtain dynamics with LLE of
approximate 0.7 and metric entropy of around 1.4 as shown in Fig. 6 by adopting suitable
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value of parameters and delays. Recall that, in the specific example of single time-delay
Mackey-Glass system examined by J.D. Farmer (Farmer, 1982), LLE and metric entropy were
reported at around 0.07 and 0.1, respectively. The ‘V’ shape of LLE and metric entropy with
respect to m1 and m2 in Figs. 4 and 5 illustrates more intuitively. At small value of mi, the
two-delays system tends to be single time-delay system due to weak feedback. The shift of
‘V’ shape in the case of m3 = 3.0 can be interpreted that there is some correlation to value of
delays. Here, τ2 associated with m2 holds largest value. Undoubtedly, MTDSs holds dynamics
which is more complicated than that of STDSs.

6. Conclusion

In this chapter, the synchronization model of coupled identical MTDSs has been presented,
in which the coupling signal is sum of nonlinear transforms of delayed state variable. The
synchronous schemes of lag, anticipating, projective-lag and projective-anticipating have
been examined in the proposed models. In addition, the synchronization model of coupled
nonidentical MTDS has been studied in two cases, i.e., partially identical and completely
nonidentical. The scheme of lag synchronization has been used for demonstrating and
verifying the cases. The simulation result has consolidated the general description to the
proposed synchronous schemes. Noticeably, combination between synchronous schemes of
projective and lag/anticipating is first time mentioned and investigated.
The transition between the lag and anticipating synchronization as well as between the
projective-lag to projective-anticipating synchronization can be yielded simply by adjusting
the relation between delays while the change from the lag to projective-lag synchronization
and from the anticipating to projective-anticipating synchronization has been realized by
modifying the relation between coefficients. Similarly, other synchronous schemes of coupled
nonidentical MTDSs can be investigated as ways dealing in the synchronization models of
identical MTDSs, and synchronous regimes will also be established as expected. This allows
the synchronization models becoming flexible in selection of working scheme and switch
among various schemes.
In summary, the proposed synchronization models present advantages to the application of
secure communications in comparison with conventional ones. Advantages lie in both the
complexity of driving signal and infinite-dimensional dynamics.
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1. Introduction      
Time delays are often encountered by practical control systems while they are acquiring, 
processing, communicating, and sending signals. Time delays may affect the system 
stability and degrade the control system performance if they are not properly dealt with. 
Taking the classical robot control problem as an example, the significant effect of time delay 
on the closed-loop system stability has been highlighted in the bilateral teleoperation, where 
the communication delay transmitted through a network medium has been received 
widespread attention and different approaches have been proposed to address this problem 
(Hokayem and Spong, 2006). In addition, examples like processing delays in visual systems 
and communication delay between different computers on a single humanoid robot are also 
main sources that may cause time delays in a robotic control system (Chopra, 2009), and the 
issue of time delay for robotic systems has been studied through the passivity property.  
For systems with time delays, both delay dependent and delay independent control 
strategies have been extensively studied in recent years, see for example (Xu and Lam, 2008) 
and references therein. For the control of nonlinear time delay systems, model based Takagi-
Sugeno (T-S) fuzzy control (Tanaka and Wang, 2001; Feng, 2006; Lin et al., 2007) is regarded 
as one of the most effective approach because some of linear control theory can be applied 
directly. Conditions for designing such kinds of controllers are generally expressed as linear 
matrix inequalities (LMIs) which can be efficiently solved by using most available software 
like Matlab LMI Toolbox, or bilinear matrix inequalities (BMIs) which could be transferred 
to LMIs by using algorithms like iteration algorithm or cone complementary linearisation 
algorithm. From the theoretical point of view, one of the current focus on the control of time 
delay systems is to develop less conservative approaches so that the controller can stabilise 
the systems or can achieve the defined control performance under bigger time delays (Chen 
et al., 2009; Liu et al., 2010). 
Tracking control of robotic manipulators is another important topic which receives 
considerable attention due to its significant applications. Over the decades, various 
approaches in tracking control of nonlinear systems have been investigated, such as 
adaptive control approach, variable structure approach, and feedback linearisation 
approach, etc. Fuzzy control technique through T-S fuzzy model approach is also one 
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effective approach in tracking control of nonlinear systems (Ma and Sun, 2000; Tong et al., 
2002; Lin et al., 2006), and in particular, for robotic systems (Tseng et al., 2001; Begovich et 
al., 2002; Ho et al., 2007).  
In spite of the significance on tracking control of robotic systems with input time delays, few 
studies have been found in the literature up to the date. This chapter attempts to propose an 
H∞ controller design approach for tracking control of robotic manipulators with input 
delays. As a robotic manipulator is a highly nonlinear system, to design a controller such 
that the tracking performance in the sense of H∞ norm can be achieved with existing input 
time delays, the T-S fuzzy control strategy is applied. Firstly, the nonlinear robotic 
manipulator model is represented by a T-S fuzzy model. And then, sufficient conditions for 
designing such a controller are derived with taking advantage of the recently proposed 
method (Li and Liu, 2009) in constructing a Lyapunov-Krasovskii functional and using a 
tighter bounding technology for cross terms and the free weighting matrix approach to 
reduce the issue of conservatism. The control objective is to stabilise the control system and 
to minimise the H∞ tracking performance, which is related to the output tracking error for 
all bounded reference inputs, subject to input time delays. With appropriate derivation, all 
the required conditions are expressed as LMIs. Finally, simulation results on a two-link 
manipulator are used to validate the effectiveness of the proposed approach. The main 
contributions of this chapter are: 1) to propose an effective controller design method for 
tracking control of robotic manipulator with input time delays; 2) to apply advanced 
techniques in deriving less conservative conditions for designing the required controller; 3) 
to derive the conditions properly so that they can be expressed as LMIs and can be solved 
efficiently. 
This chapter is organised as follows. In section 2, the problem formulation and some 
preliminaries on manipulator model, T-S fuzzy model, and tracking control problem are 
introduced. The conditions for designing a fuzzy H∞ tracking controller are derived in 
section 3. In section 4, the simulation results on stability control and tracking control of a 
nonlinear two-link robotic manipulator are discussed. Finally, conclusions are summarised 
in section 5. 
The notation used throughout the paper is fairly standard. For a real symmetric matrix W, 
the notation of W >0 (W <0) is used to denote its positive- (negative-) definiteness. . refers 
to either the Euclidean vector norm or the induced matrix 2-norm. I is used to denote the 
identity matrix of appropriate dimensions. To simplify notation, * is used to represent a 
block matrix which is readily inferred by symmetry. 

2. Preliminaries and problem statement 
2.1 Manipulator dynamics model  
To simplify the problem formulation, a two-link robot manipulator as shown in Fig. 1 is 
considered. 
The dynamic equation of the two-link robot manipulator is expressed as (Tseng, Chen and 
Uang, 2001) 

 M(q)q+V(q,q)q+G(q)=u  (1) 

where  
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Fig. 1. Two-link robotic manipulator. 
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and q=[q1,q2]T and u=[u1,u2]T denote the generalised coordinates (radians) and the control 
torques (N-m), respectively. M(q) is the moment of inertia, V(q, q ) is the centripetal-Coriolis 
matrix, and G(q) is the gravitational vector. m1 and m2 (in kilograms) are link masses, l1 and 
l2 (in meters) are link lengths, g=9.8 (m/s2) is the acceleration due to gravity, and s1=sin (q1), 
s2=sin (q2), c1=cos (q1), and c2=cos (q2). After defining x1=q1, x2= 1q , x3= 2q , and x4= 2q , 
equation (1) can be rearranged as 

 

1 2 1

2 1 11 1 12 2 2

3 4 3

4 2 21 1 22 2 4

x =x w
x =f (x)+g (x)u +g (x)u w
x =x w
x =f (x)+g (x)u +g (x)u w

+
+

+
+

  (2) 

where w1, w2, w3, w4 denote external disturbances, and  
1 2 1 2

1 2 2 2 2
1 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 2 2 2 4

2
1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 2 1 2 1 2

(s c -c s )f (x)=
l l [(m +m )-m (s s +c c ) ][m l l [(s s +c c )x -m l x ]

1
l l [(m +m )-m (s s +c c ) ][(m +m )l gs -m l gs (s s +c c )]

+
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1 2 1 2
2 2 2 2 2

1 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 4

(s c -c s )f (x)
l l [(m +m )-m (s s +c c ) ][-(m +m )l x +m l l (s s +c c )x ]

=  

         2
1 2 1 2 2 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 2

1
l l [(m +m )-m (s s +c c ) ][-(m +m )l gs (s s +c c )+(m +m )l gs ]

+  

2
2 2

11 2 2 2
2 1 2 1 2 2 1 2 1 2

2 1 2 1 2 1 2
12 2 2 2

2 1 2 1 2 2 1 2 1 2

2 1 2 1 2 1 2
21 2 2 2

2 1 2 1 2 2 1 2 1 2
2

1 2 1
22 2 2

2 1 2 1 2 2 1 2

m lg (x)=
m l l [(m +m )-m (s s +c c ) ]

-m l l (s s +c c )g (x)=
m l l [(m +m )-m (s s +c c ) ]

-m l l (s s +c c )g (x)=
m l l [(m +m )-m (s s +c c ) ]

(m +m )lg (x)=
m l l [(m +m )-m (s s + 2

1 2c c ) ]

 

Note that the time variable t is omitted in the above equations for brevity. 

2.2 T-S fuzzy model 
The above described robotic manipulator is a nonlinear system. To deal with the controller 
design problem for the nonlinear system, the T-S fuzzy model is employed to represent the 
nonlinear system with input delays as follows: 
Plant rule i 
  

IF 1θ (t) is Ni1 , …, pθ (t)  is Nip THEN 

 
ϕ ∈

i i

0

x(t)=A x(t)+B u(t-τ)+Ew(t)
y(t)=Cx(t)
x(0)=x ,u(t)= (t),t [-τ,0],i=1,2,...,k

  (3) 

where Nij is a fuzzy set, T
1 pθ(t)=[θ (t),...,θ (t)] are the premise variables, x(t) is the state vector, 

and w(t) is external disturbance vector, Ai and Bi are constant matrices. Scalar k is the 
number of IF-THEN rules. It is assumed that the premise control variables do not depend on 
the input u(t). The input delay τ is an unknown constant time-delay, and the constant τ>0  is 
an upper bound of τ . 
Given a pair of (x(t),u(t)), the final output of the fuzzy system is inferred as follows 

 
ϕ ∈

∑
k

i i i
i=1

0

x(t)= h (θ(t))(A x(t)+B u(t-τ)+Ew(t))

y(t)=Cx(t)
x(0)=x ,u(t)= (t),t [-τ,0]

  (4) 

where ∏∑
p

i
i i j ij jk

j=1ii=1

μ (θ(t))h (θ(t))= , μ (θ (t))= N (θ (t))
μ (t))

and ij jN (θ (t))  is the degree of the 

membership of jθ (t) in Nij. In this paper, we assume that i jμ (θ (t)) 0≥ for i=1,2,…,k and 

>∑k
ii=1

μ (θ(t)) 0 for all t. Therefore, ih (θ(t)) 0≥ for i=1,2,…,k, and ∑k
ii=1

h (θ(t))=1 . 



T-S Fuzzy H∞ Tracking Control of Input Delayed Robotic Manipulators   

 

215 

2.1 Tracking control problem 
Consider a reference model as follows 

 r r r

r r r

x (t)=A x (t)+r(t)
y (t)=C x (t)

  (5) 

where xr(t) and r(t) are reference state and energy-bounded reference input vectors, 
respectively, Ar and Cr are appropriately dimensioned constant matrices. It is assumed that 
both x(t) and xr(t) are online measurable. 
For system model (3) and reference model (5), based on the parallel distributed 
compensation (PDC) strategy, the following fuzzy control law is employed to deal with the 
output tracking control problem via state feedback. 
Control rule  
  

IF 1θ (t) is Ni1 , …, pθ (t)  is Nip THEN 

 1i 2i ru(t)=K x(t)+K x (t), i=1,2,...,k   (6) 

Hence, the overall fuzzy control law is represented by 

 ∑ ∑
k k

i 1i 2i r i i
i=1 i=1

u(t)= h (θ(t))[K x(t)+K x (t)]= h (θ(t))K x(t)   (7)  

where K1i, and K2i, i=1,2,…,k, are the local control gains, and Ki=[K1i, K2i] and 
T T T

rx(t)=[x (t),x (t)] . When there exists an input delay τ , we have that 
k

i 1i 2i r
i=1

u(t-τ)= h (θ(t-τ))[K x(t-τ)+K x (t-τ)]∑ , so, it is natural and necessary to make an 

assumption that the functions ih (θ(t)) , i=1,2,… ,k, are well defined for all t [-τ,0]∈ , and 

satisfy the following properties ih (θ(t-τ)) 0≥ for i=1,2,…,k and ii=1
h (θ(t-τ)) 1k

=∑ . For 
convenience, let i ih =h (θ(t)) , i ih (τ)=h (θ(t-τ)) , x(τ)=x(t-τ) , and u(τ)=u(t-τ) . From here, unless 
confusion arises, time variable t will be omitted again for notational convenience. 
With the control law (7), the augmented closed-loop system can be expressed as follows 

 

k

i j i ij
i,j=1

x= h h (τ)[A x+B x(τ)+Ev]

e=Cx

∑   (8) 

where  

[ ]i i 1j i 2j i
i ij 1j 2j i j r r

r

A 0 B K B K B E 0 wˆA = ,B = = [K K ]=B K ,E= ,C= C -C ,v= ,e=y-y
0 A 0 0 0 0 I r

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

The tracking requirements are expressed as follows 
1. The augmented closed-loop system in (8) with v=0 is asymptotically stable; 
2. The H∞ tracking performance related to tracking error e is attenuated below a desired 

level, i.e., it is required that 



 Time-Delay Systems 

 

216 

 2 2e <γ v   (9) 

 

for all nonzero 2v L [0, )∈ ∞  under zero initial condition, where γ>0 . 
Our purpose is to find the feedback gains Ki (i=1,2,…,k) such that the above mentioned two 
requirements are met. 

3. Tracking controller design 
To derive the conditions for designing the required controller, the following lemma will be 
used. 

Lemma 1: (Li and Liu, 2009) For any constant matrices 11S 0≥ , 12S , 22S 0≥ , 11 12

22

S S
0

* S
⎡ ⎤

≥⎢ ⎥
⎣ ⎦

, 

scalar τ τ≤  and vector function nx:[-τ,0] R→ such that the following integration is well 
defined, then   

 

T
T

22 22 12
t 11 12T T T

22 22 12t-τ
22 t t

12 12 11
t-τ t-τ

x -S S -S x
S S x(s)

-τ [x (s),x (s)] x(τ) S -S S x(τ)
* S x(s)

-S S -Sx(s)ds x(s)ds

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥≤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦

∫
∫ ∫

  (10) 

 

We now choose a delay-dependent Lyapunov-Krasovksii functional candidate as 

 
tT T

t-τ
V=x Px+τ (s-(t-τ)η (s)Sη(s)ds∫   (11) 

 

where ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T 11 12 11 12T T
11 22

22 22

S S S S
η(s)= x (s),x (s) , P>0, S= , S >0, S >0, >0

* S * S
. 

The derivative of V along the trajectory of (8) satisfies  

 
tT 2 T T

t-τ
V=2x Px+τ η Sη-τ η (s)Sη(s)ds∫   (12) 

 

If follows from (8) that 

 
k

T T T T
1 2 3 4 i j i ij

i,j=1
0=2[x T +x (τ)T +x T +d v ] h h (τ)[A x+B x(τ)+Ev]-x

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑   (13) 

i.e., 

1

k
2T T T T

i j i ij
i,j=1 3

4

T x
T x(τ)

0=2 h h (τ)[ x x (τ) x v ] A B -I E
T x
d I v

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑  
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1 i 1 ij 1 1

2 i 2 ij 2 2

3 i 3 ij 3 3

k 4 i 4 ij 4 4T T T T
i j

i,j=1 1 i 1 ij 1 1

2 i 2 ij 2 2

3 i 3 ij 3 3

4 i 4 ij 4 4

T A T B -T T E
T A T B -T T E
T A T B -T T E
d A d B -d I d E

h h (τ)[ x x (τ) x v ]
T A T B -T T E
T A T B -T T E
T A T B -T T E
d A d B -d I d E

T

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎢ ⎥
⎜ ⎢ ⎥
⎜ ⎢ ⎥
⎣ ⎦⎜= ⎜
⎡ ⎤⎜
⎢ ⎥⎜
⎢ ⎥⎜+ ⎢ ⎥⎜
⎢ ⎥⎜
⎢ ⎥⎜ ⎣ ⎦⎝ ⎠

∑

x
x(τ)

x
v

⎟
⎟ ⎡ ⎤
⎟ ⎢ ⎥
⎟ ⎢ ⎥
⎟ ⎢ ⎥
⎟ ⎢ ⎥
⎟ ⎣ ⎦
⎟
⎟
⎟
⎟

 (14) 

where T1, T2, and T3 are constant matrices, and d4 is a constant scalar. Note that d4 is 
introduced as a scalar not a matrix because it is convenient to get the LMI conditions later. 
Using the above given equality (14) and Lemma 1, and adding two sides of (12) by 

T 2 Te e-γ v v , it is obtained that 

 

11 12T 2 T T T T T 2 T

22

T
T

22 22 12
T

22 22 12
t t

12 12 11
t-τ t-τ

1

k
2T T T T

i j
i,j=1

xS S
V+e e-γ v v 2x Px+τ[x ,x ] +e e-γ v v

* S x

x -S S -S x
+ x(τ) S -S S x(τ)

-S S -Sx(s)ds x(s)ds

T
T

2 h h (τ)[ x x (τ) x v ]

⎡ ⎤⎡ ⎤
≤ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦

+

∫ ∫

∑ i ij
3

4

k
T

i j ij
i,j=1

x
x(τ)

A B -I E
T x
d I v

h h (τ)ξ Σ ξ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

= ∑

 (15) 

where ( )TtT T T T T

t-τ
ξ = x x (τ) x(s)ds x v⎡ ⎤

⎢ ⎥⎣ ⎦∫  and  

                

22
22 1 ij 1211 22 1 i T T

12 1 4 iT TT T T T T
1 i 3i 1 i 2

22 2 ij T T T T
12 2 ij 3 2 4 ijT T

ij 2

ij 11
2

22 3
3 4T

3

T
4 4

2

S +T B P+τ Sτ S -S +T A
-S T E+d A

-T +A T+A T +C C +A T

-S +T B
* S -T +B T T E+d B

+B T
= * * -S 0 0

τ S -T
* * * T E-d I

-T
d E+d E

* * * *
-γ I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Σ
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                (16) 
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It can be seen from (15) that if ij 0Σ < , then T 2 TV+e e-γ v v<0 can be deduced and therefore 
2 2e <γ v can be established with the zero initial condition. When the disturbance is zero, 

i.e., v=0 , it can be inferred from (15) that if ij 0Ξ < , then V<0 , and the closed-loop system 
(8) is asymptotically stable. 
By denoting T2=d2T1,T3=d3T1, where d2 and d3 are given constants, pre and post-multiplying 
both side of (16) with diag[Q, Q, Q, I, Q] and their transpose, defining new variables -1

1Q=T , 
T

11 11S =QS Q , T
12 12S =QS Q , T

22 22S =QS Q , TP=QPQ , and T
j jK =K Q , ij 0Σ <  is equivalent to  

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

2 T 2
22 i j11 22 i 12T T

12 4 iT T T T TT
i 3 i2 i

T T
22 2 i j 3 j iT T T

12 2 4 j iT T T
2 j i 2

11

2
22 3

3 4T
3

T
4 4

2

ˆS +B Kτ S -S +A Q P+τ S
-S E+d QA

+QA +QC CQ -Q +d QA+d QA
ˆ ˆ-S +d B K d K B ˆ* S d E+d K Bˆ+d K B -d Q

* * -S 0 0

τ S -d Q
* * * d E-d Q

-d Q
d E+d E

* * * *
-γ I

<⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

0   (17) 

which is further  equivalent to ij 0Ξ <  by the Schur complement, where 

 

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢Ξ
⎢
⎢
⎢
⎢
⎢

⎣

2 2
22 i j11 22 12T T T

12 4 iT T T TT
i i 3 i2 i

T T
22 2 i j 3 j iT T T

12 2 4 j iT T T
2 j i 2

11ij
2

22 3
3 4T

3

T
4 4

2

ˆS +B Kτ S -S P+τ S
-S E+d QA QC

+A Q +QA -Q +d QA+d QA
ˆ ˆ-S +d B K d K B ˆ* S d E+d K B 0ˆ+d K B -d Q

* * -S 0 0 0=
τ S -d Q

* * * d E-d Q 0
-d Q

d E+d E
* * * * 0

-γ I
* * * * * -I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

 (18) 

In terms of the above given analysis, we now summarise the proposed tracking controller 
design procedure as:  
i. define value for τ and choose appropriate values for d2, d3, and d4.  
ii. solve the following LMIs 

 ii 0Ξ <  (19) 

 ij ji 0Ξ + Ξ <  (20) 
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 11 12

22

S S
0

* S

⎡ ⎤
≥⎢ ⎥

⎢ ⎥⎣ ⎦
  (21) 

If there exist P>0 , 11S 0> , 22S 0>  and real matrices Q, 12S , jK (j=1,...k) satisfying LMIs (19-
21), then the closed-loop system (8) is asymptotically stable for any 0 τ τ≤ ≤  and the 
tracking performance defined in (9) can be achieved.  
iii. obtain the control gain matrices as 

 T -1
j jK =K (Q )  (22) 

4. Numerical example 
This section takes two-link robotic manipulator as an example and evaluates the proposed 
controller design approach through numerical simulations. In the reference (Tseng, Chen 
and Uang, 2001), the T-S fuzzy model with nine rules is used to represent the original 
nonlinear manipulator system with acceptable accuracy when link masses m1=m2=1 (kg), 
link lengths l1=l2=1 (m), and angular positions are constrained within [ - π/2 , π/2 ] , where 
triangle type membership functions are used for all the rules.  
To show the effectiveness of the proposed controller design method, the stability control of 
the robotic manipulator with and without input delays is firstly evaluated. For comparison 
purpose, we introduce a so-called robust controller from (Sun, et al., 2007), which was 
designed using a region based rule reduction approach and obtained with one rule to 
reduce the complexity caused by the number of fuzzy rules. The design result for this 
controller with a decay rate 0.5 was given as  

 
-115.6439 -49.9782 -13.4219 -3.7453

K=
14.6547 -3.4203 -62.7788 -22.1846

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (23) 

The simulation results for the nonlinear model (1) with initial condition x(0)=[1.2,0,-1.2,0]T 
and controller (23) without input delays are shown in Fig. 2.  
It is seen from Fig. 2 that all the state variables converge to the equilibrium states from initial 
conditions quickly. We now introduce input delays to the two control inputs. As an 
example, input delays for both control inputs are given as 24 ms, and the simulation results 
for all state variables are shown in Fig. 3. 
It is observed that the state variables do not converge to equilibrium states in this case and 
hence controller (23) is not able to stabilise the system when input time delays are given as 
24 ms.  
Following the similar idea given in (Sun, et al., 2007), a robust controller which uses only 
one rule and considers the fuzzy model as a polytopic uncertain model can also be designed 
using the presented conditions (19-21). We now use the reference model as   

r

0 1 0 0
-6 -5 0 0

A =
0 0 0 1
0 0 6 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎣ ⎦

,  
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Fig. 2. State responses for controller (23) without input delays.   
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Fig. 3. State responses for controller (23) with input delay as 24 ms.   
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choose τ =30 ms, d2=0.1, d3=0.1, d4=0.1, and define 
10 0 0 0 -10 0 0 0

C=
0 0 10 0 0 0 10 0

⎡ ⎤
⎢ ⎥−⎣ ⎦

, 

which aims on reducing tracking errors on state variables x1 and x3, the LMIs (19-21) are 
feasible to find a solution, and the controller gain matrix is obtained as 

 
-52.5581  -14.8674    0.7159   -0.0785  33.3479    5.8168   -5.0603   -0.6409

K=
 -0.6312   -0.5382  -31.8608   -8.5689  -1.9704   -0.2084   22.7118    3.7215

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (24) 

To check the stability control performance of the designed controller (24), the reference 
input and external disturbances are all set as zero, and the initial conditions are same to the 
above used values. The simulation results with controller (24) are now shown in Fig. 4 when 
input delays are given as 30 ms.  
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Fig. 4. State responses for controller (24) with input delays as 30 ms.   
It is seen from Fig. 4 that all the state variables converge to equilibrium states no matter the 
existence of the input time delays, which shows the effectiveness of the designed controller 
(24) when the input time delays are considered in the controller design procedure.   
As controller (24) is designed using the tracking controller design conditions (19-21), its 
tracking control performance can be checked as well when the reference inputs are 
provided. As those done in (Tseng, Chen and Uang, 2001), we define reference input as 

[ ]r(t)= 0, 8sin(t), 0, 8cos(t) T and to validate its robustness, the external disturbances are given 
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as w1=0.1sin(2t), w2=0.1cos(2t), w3=0.1cos(2t), and w4=0.1sin(2t). The initial condition is 
assumed to be [x1(0),x2(0),x3(0),x4(0)]T=[0.5, 0, -0.5, 0]T, and the input time delays are 
assumed to be 30 ms. Under these conditions, the simulation responses for both the 
reference state variables and actual state variables are shown in Fig. 5 for x1 (left) and x3 
(right), respectively.  From Fig. 5, it is observed that the actual state variables are able to 
track the reference state variables although there is a big difference at the beginning due to 
different initial values. It proves that the designed controller (24), in spite of its simplicity in 
structure, can stabilise the nonlinear manipulator system and can basically track the 
reference state variables.   
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Fig. 5. State responses for the designed controller (24) with input delays as 30 ms.   
Nevertheless, from Fig. 5, it is also seen that the tracking performance is not really desirable 
as the differences between the reference state variables and the actual state variables can be 
easily identified, in particular, for state variable x1 (left). The poor tracking performance 
realised by controller (24) comes from the reasons that it is one rule based controller and 
therefore it is weak in achieving good performance for the original model which is 
approximated with nine rules.  
We now design a fuzzy tracking controller through PDC strategy by using the proposed 
approach. Using the same parameter values for τ , d2, d3, d4, and C , the LMIs (19-21) are 
feasible to find a solution, and the controller gain matrices for nine rules are given as 
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1

 -115.9265  -19.4020  -51.6975   -9.0525  101.1323   12.6747   45.3281    5.8894
K =

  -53.0984   -9.4817    -58.7058   -9.9765    48.3992    6.1958   51.9449    6.5429
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

2

 -141.9683  -23.5791    0.2777   -0.3129  124.8768   15.4512   -2.2731    0.0976
K =

   -3.4846   -0.5815  -88.7399  -14.9675    0.2146    0.2869   80.2204    9.8727
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

3

 -115.5704  -19.0475   55.4697    9.1381  102.6000   12.5192  -52.2332   -6.1268
K =

   54.2377    9.4285  -55.4358   -9.5060  -51.7672   -6.2518   52.6118    6.3387
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

4

-146.4229  -23.9600    0.6201   -0.1205 126.9068   15.6729   -3.3843   -0.0513
K =

1.2587   -0.3380  -90.8831  -15.0851   -0.9041    0.1750   80.8721    9.9366
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

5

-121.6095  -19.5529  -50.2643   -8.9250 101.9231   12.7272   44.6201    5.8019
K =

  -51.8299   -9.3220  -62.0814  -10.0800   47.5336    6.0782   52.4858    6.5645
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

6

-145.5178  -23.8434   -0.1544   -0.2041 126.2843   15.5980   -2.9193    0.0002
K =

    0.3571   -0.4417  -90.2942  -15.0410   -0.5286    0.2197   80.6263    9.9110
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

7

-115.6616  -19.0441   55.1637    9.1441 102.6047   12.5166  -52.2722   -6.1372
K =

   54.5435    9.4487  -55.3558   -9.5095  -51.7828   -6.2513   52.6340    6.3439
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

8

-142.5607  -23.6137    0.4674   -0.2926 125.0556   15.4695   -2.3887    0.0840
K =

   -2.8051   -0.5295  -89.1068  -14.9940    0.1127    0.2772   80.3652    9.8887
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

9

-116.9415  -19.5309  -50.5115   -8.8252 101.8508   12.7564   44.0836    5.7350
K =

  -52.3753   -9.3980  -59.5804  -10.1199   47.9301    6.1423   52.7279    6.6383
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

The tracking performance implemented by this fuzzy controller is shown in Fig. 6. It can be 
seen that the differences between the reference state variables and the actual state variables 
are largely reduced for both state variables. The tracking performance is therefore improved 
even with the existence of input time delays. 
It is noted that in the proposed controller design approach, several parameters like d2, d3, 
and d4, need to be defined before starting to solve the LMIs. These parameters could be 
optimised in terms of the tolerable maximum input delays τ , tracking performance γ , and 
feasible solutions to LMIs (19-21), etc. The weights on matrix C  will also play an important 
role in obtaining a good tracking performance. Higher weight value on one state variable 
will generally result in a controller which can reduce the tracking error on this state variable 
in comparison to other variables. However, these parameters need to be considered 
altogether and some possible optimisation algorithms, such as genetic algorithms (GAs), 
could be used to find the sub-optimal parameters, which, however, is beyond the scope of 
this chapter, and will not be further discussed. 
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Fig. 6. State responses for the proposed fuzzy tracking controller with input delays as 30 ms.   
 

5. Conclusions 

In this chapter, the tracking control problem for a robotic manipulator with input time 
delays is studied. To deal with the nonlinear dynamics of robotic manipulator, the T-S fuzzy 
control strategy is applied. To reduce the conservativeness in deriving conditions for 
designing such a tracking controller, the most advanced techniques in defining Lyapunov-
Krasovskii functional and in solving cross terms are used. To achieve good tracking 
performance, the tracking error in the sense of H∞ norm is minimised. The sufficient 
conditions are derived as delay-dependent LMIs, which can be solved efficiently using 
currently available software like Matlab LMI Toolbox. The solution is also dependent to the 
values of d2, d3, d4, and the weights on matrix C , which may further provide the space to 
improve the performance of the designed controller. Numerical simulations are applied to 
validate the performance of the proposed approach. The results show that the designed 
controller can achieve good tracking performance regardless of the existence of input time 
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delays. This topic is going to be further studied with considering modelling errors, 
parameter uncertainties, and actuator saturations.  

6. References 
Begovich, O., Sanchez, E. N. and Maldonado, M. (2002). Takagi-Sugeno fuzzy scheme for 

real-time trajectory tracking of an underactuated robot, IEEE Transactions on Control 
Systems Technology, Vol. 10, No. 1, 14-20 

Lin, C., Wang, Q. G. and Lee, T. H. (2007). LMI Approach to Analysis and Control of Takagi-
Sugeno Fuzzy Systems with Time Delay, Springer, New York. 

Chen, B., Liu, X., Lin, C. and Liu, K. (2009). Robust H∞ control of Takagi-Sugeno  
fuzzy systems with state and input time delays, Fuzzy Sets and Systems, Vol. 160, 
403-422 

Chopra, N. (2009). Control of robotic manipulators with input/output delays, Proceedings 
of the American Control Conference, St. Louis, MO, USA, 2024-2029 

Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems, 
IEEE Transactions on Fuzzy Systems, Vol. 14, No. 5, 676-697 

Ho, H. F., Wong, Y. K. and Rad, A. B. (2007). Robust fuzzy tracking control for robotic 
manipulators, Simulation Modelling Practice and Theory, Vol. 15, 801-816 

Hokayem, P. F. and Spong, M. W. (2006). Bilateral teleoperation: An historical survey, 
Automatica, Vol. 42, 2035-2057 

Li, L. and Liu, X. (2009). New results on delay-dependent robust stability criteria of 
uncertain fuzzy systems with state and input delays, Information Sciences, Vol. 
179, 1134-1148. 

Lin, C., Wang, Q.-G. and Lee, T. H. (2006). H∞ output tracking control for nonlinear systems 
via T-S fuzzy model approach, IEEE Transactions on Systems, Man and 
Cybernetics—Part B: Cybernetics, Vol. 36, No. 2, 450-457 

Liu, F., Wu, M., He, Y. and Yokoyama, R. (2010). New delay-dependent stability criteria for 
T-S fuzzy systems with time-varying delay, Fuzzy Sets and Systems, Vol. 161, 2033-
2042. 

Ma, X.-J. and Sun, Z.-Q. (2000). Output tracking and regulation of nonlinear system based 
on Takagi-Sugeno fuzzy model, IEEE Transactions on Systems, Man and 
Cybernetics—Part B: Cybernetics, Vol. 30, No. 1, 47-59 

Sun, C.-C., Wu, S.-M., Chung, H.-Y. and Chang, W.-J. (2007). Design of Takagi-Sugeno fuzzy 
region controller based on rule reduction, robust control, and switching concept, 
Journal of Dynamic Systems, Measurement, and Control, Vol. 129, 163-170 

Tanaka, K. andWang, H. O. (2001). Fuzzy control systems design and analysis: A linear 
matrix inequality approach, John Wiley & Sons, Inc., New York 

Tong, S., Wang, T. and Li, H.-X. (2002). Fuzzy robust tracking control for  
uncertain nonlinear systems, International Journal of Approximate Reasoning, Vol. 
30, 73-90 

Tseng, C.-S., Chen, B.-S. and Uang, H.-J. (2001). Fuzzy tracking control design for nonlinear 
dynamic systems via T-S fuzzy model, IEEE Transactions on Fuzzy Systems, Vol. 9, 
No. 3, 381-392 



 Time-Delay Systems 

 

226 

Xu, S. and Lam, J. (2008). A survey of linear matrix inequality techniques in stability analysis 
of delay systems, International Journal of Systems Science, Vol. 39, 1095-1113 


	Time Delay Systems Preface
	01_Introduction to Stability of Quasipolynomials
	02_Stability of Linear Continuous Singular and Discrete Descriptor Systems over Infinite and Finite Time Interval
	03_Stability of Linear Continuous Singular and Discrete Descriptor Time Delayed Systems
	04_Exponential Stability of Uncertain Switched System with Time-Varying Delay
	05_On Stable Periodic Solutions of One Time Delay System Containing Some Nonideal Relay Nonlinearities
	06_Design of Controllers for Time Delay Systems: Integrating and Unstable Systems
	07_Decentralized Adaptive Stabilization for Large-Scale Systems with Unknown Time-Delay
	08_Resilient Adaptive Control of Uncertain Time-Delay Systems
	09_Sliding Mode Control for a Class of Multiple Time-Delay Systems
	10_Recent Progress in Synchronization of Multiple Time Delay Systems
	11_T-S Fuzzy H∞ Tracking Control of Input Delayed Robotic Manipulators


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


